• 제목/요약/키워드: AZO(ZnO:Al)

검색결과 214건 처리시간 0.026초

Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가 (Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition)

  • 임진솔;안진혁;김정민;성시준;조국영
    • 전기화학회지
    • /
    • 제22권2호
    • /
    • pp.60-68
    • /
    • 2019
  • 이차 전지의 고전압 구동은 기존 셀 구조의 변화 없이도 고용량을 구현할 수 있는 유용한 접근 방법 중에 하나이나, 전극 표면에서의 극심한 부반응과 전극 활물질의 구조 붕괴 등과 같은 문제를 야기하게 된다. 본 연구에서는 니켈-망간-코발트 삼성분계(NCM) 활물질을 도입한 양극의 고전압 구동을 위해 원자층 증착법 (Atomic Layer Deposition, ALD)을 통해 전극판 표면에 $Al_2O_3$와 ZnO층으로 구성된 코팅 층을 형성하였다. 기존 ALD법으로 제조되는 박막에 비해 유사한 조건에서도 두꺼운 Al-doped ZnO (AZO)층을 최초로 형성하였고, 코팅된 AZO층의 두께를 달리한 NCM 기반의 양극판을 제조하였다. ALD 코팅된 양극이 도입된 코인셀을 제조하여 두껍게 형성된 코팅 층의 두께에 따른 고전압에서 충방전 거동을 확인하였다.

산소 가스 유량비에 따라 제작한 Al이 도핑된 ZnO 박막 (AI doped ZnO thin film deposited with $O_2$ gas flow rate)

  • 조범진;금민종;김경환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.67-68
    • /
    • 2006
  • We prepared the AZO thin film with different $O_2$ gas flow rate. the AZO thin films were deposited on glass substrate at room temperature, working gas pressure of 1mTorr. the electrical, structural and optical properties of AZO thin films were investigated by using Hall Effect measurement system, X-ray Diffractometer (XRD) and UV-VIS spectrometer. From the results, we could obtain that AZO thin film with low resistivity of $8.5{\times}10^{-4}{\Omega}cm$ was exhibited in specific $O_2$ gas flow rate. Also, the transmittance of over 80% in visible range was observed in specific $O_2$ gas flow rate. In all of the AZO thin film with the transmittance of over 80%, diffraction peak of (002) direction was observed, while amorphous peak was observed in the AZO thin film with the low transmittance.

  • PDF

기판온도 및 공정압력이 Aldoped ZnO 박막의 특성에 미치는 영향 (Effect of Substrate temperatures and Working pressures on the properties of the AI-doped ZnO thin films)

  • 강성준;정양희
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.691-698
    • /
    • 2010
  • 본 연구에서는 RF magnetron sputtering 법으로 AZO 세라믹 타켓 ($Al_2O_3$ : 3 wt%)을 이용하여 Eagle 2000 유리 기판위에 기판온도 ($100{\sim}500^{\circ}C$)와 공정압력 (10 ~ 40 mTorr)에 따른 AZO 박막을 제작하여, 결정화 특성과 전기적 및 광학적 특성을 조사하였다. 모든 AZO 박막은 육방정계구조를 가지는 다결정 이었고, (002)우선 배향성이 관찰되었다. 기판온도 $300^{\circ}C$, 10 mTorr에서 제작한 AZO 막에서 가장 우수한 (002) 배향성을 나타냈으며, 이때의 반가폭 값은 $0.42^{\circ}$였다. 전기적 특성은 기판온도 $300^{\circ}C$, 10 mTorr에서 가장 낮은 비저항 $2.64{\times}10^{-3}\;{\Omega}cm$과 우수한 캐리어 농도 및 이동도를 $5.29{\times}10^{20}\;cm^{-3}$, $6.23\;cm^2/Vs$를 나타내었다. 모든 AZO 박막은 가시광 영역에서 80%의 투과율을 나타내었으며, 기판온도 증가와 공정압력 감소에 따른 Al 도핑효과의 증가로 밴드 갭이 넓어지는 Burstein-Moss 효과가 관찰 되었다.

Structural and Electrical Properties of a-axis ZnO:Al Thin Films Grown by RF Magnetron Sputtering

  • 봉성재;김선보;안시현;박형식;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.329.1-329.1
    • /
    • 2014
  • In this paper, we report electrical, optical and structural properties of Al-doped zinc oxide (AZO) thin films deposited at different substrate temperatures and pressures. The films were prepared by radio frequency (RF) magnetron sputtering on glass substrates in argon (Ar) ambient. The X-ray diffraction analysis showed that the AZO films deposited at room temperature (RT) and 20 Pa were mostly oriented along a-axis with preferred orientation along (100) direction. There was an improvement in resistivity ($3.7{\times}10^{-3}{\Omega}-cm$) transmittance (95%) at constant substrate temperature (RT) and working pressure (20 Pa) using the Hall-effect measurement system and UV-vis spectroscopy, respectively. Our results have promising applications in low-cost transparent electronics, such as the thin-film solar cells and thin-film transistors due to favourable deposition conditions. Furthermore our film deposition method offers a procedure for preparing highly oriented (100) AZO films.

  • PDF

고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향 (Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell)

  • 김도완;이동원;이희수;김승태;박지홍;김용남
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • 제26권3호
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.

RF magnetron sputter에 의해 제조된 AZO/Ag/AZO 다층박막의 Ag 두께가 전기적 광학적 특성에 미치는 영향 (Influence of Ag Thickness on Electrical and Optical Properties of AZO/Ag/AZO Multi-layer Thin Films by RF Magnetron Sputtering)

  • 안진형;강태원;김동원;김상호
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.9-12
    • /
    • 2006
  • Al-doped ZnO(AZO)/Ag/AZO multi-layer films deposited on PET substrate by RF magnetron sputtering have a much better electrical properties than Al-doped ZnO single-layer films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the optimum thickness of Ag layers was determined to be $112{\AA}$ for high optical transmittance and good electrical conductivity. With about $1800{\AA}$ thick AZO films, the multi-layer showed a high optical transmittance in the visible range of the spectrum. The electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. A high quality transparent electrode, having a resistance as low as $6\;W/{\square}$ and a high optical transmittance of 87% at 550 nm, was obtained by controlling Ag deposition parameters.

나노뿔 형태로 제작된 ZnO 나노선의 전계방출 특성 (Field Emission Property of ZnO Nanowire with Nanocone Shape)

  • 노임준;신백균
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.590-594
    • /
    • 2012
  • ZnO nanowires were fabricated by hydrothermal synthesis technique for field emission device application. Al-doped zinc oxide (AZO) thin films were prepared as seed layer of catalyst for the ZnO nanowire synthesis, for which conductivity of the seed layer was tried to be improved for enhancing the field emission property of the ZnO nanowire. The AZO seed layer revealed specific resistivity of $ 7.466{\times}10^{-4}[{\Omega}{\cdot}cm]$ and carrier mobility of 18.6[$cm^2$/Vs]. Additionally, upper tip of the prepared ZnO nanowires was treated by hydrochloric acid (HCl) to form a nanocone shape of ZnO nanowire, which was aimed for enhanced focusing of electric field on that and resultingly to improve field emission property of the ZnO nanowires. The ZnO nanowire with nanocone shape revealed decreased threshold electric field and increased current density than those of the simple ZnO nanowires.

기판 온도에 따른 수소화된 Al-doped ZnO 박막의 특성 변화 (Effect of Growth Temperature on the Properties of Hydrogenation Al-doped ZnO Films)

  • 탁성주;강민구;이승훈;김원목;임희진;김동환
    • 한국재료학회지
    • /
    • 제17권12호
    • /
    • pp.629-633
    • /
    • 2007
  • This study examined the effect of growth temperature on the electrical and optical properties of hydrogenated Al-doped zinc oxide (AZO:H) thin films deposited by rf magnetron sputtering using a ceramic target (98 wt.% ZnO, 2 wt.% $Al_2O_3$). Various AZO films on glass were prepared by changing the substrate temperature from room temperature to $200^{\circ}C$. It was shown that intentionally incorporated hydrogen plays an important role on the electrical properties of AZO : H films by increasing free carrier concentration. As a result, in the 2% $H_2$ addition at the growth temperature of $150^{\circ}C$, resistivity of $3.21{\times}10^{-4}{\Omega}{\cdot}cm$, mobility of $21.9cm^2/V-s$, electric charge carrier concentration of $9.35{\times}10^{20}cm^{-3}$ was obtained. The AZO : H films show a hexagonal wurtzite structure preferentially oriented in the (002) crystallographic direction.

Characteristic of Al-In-Sn-ZnO Thin Film Prepared by FTS System with Hetero Targets

  • Hong, Jeong-Soo;Kim, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.76-79
    • /
    • 2011
  • In order to improve efficiency and make a new material thin film, we prepared the Al-In-Sn-ZnO thin film on a glass substrate at room temperature using a Facing Target Sputtering (FTS) system. The FTS system was designed to array two targets that face each other. Two different kinds of targets were installed on the FTS system. We used an ITO ($In_2O_3$ 90wt%, $SnO_2$ 10wt%) target and an AZO (ZnO 98wt%, $Al_2O_3$ 2wt%) target. The AIZTO films were deposited using different applied powers to the targets. The as-deposited AIZTO thin films were investigated using a UV/VIS spectrometer, an X-ray diffratometer (XRD), and Energy Dispersive X-ray spectroscopy (EDX).