• Title/Summary/Keyword: AZ31 Magnesium alloy

Search Result 245, Processing Time 0.028 seconds

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

Useful Corrosion - Potential of Magnesium Alloys as Implants

  • Kaya, A. Arslan;Kaya, R. Alper;Witte, Frank;Duygulu, Ozgur
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.162-167
    • /
    • 2008
  • Degradable implants have been in use for bone surgery for decades. However, degradable metal implants are one of the new research areas of biomaterials science. Magnesium has good biocompatibility due to its low toxicity, and it is a corroding, i.e. dissolvable, metal. Furthermore, magnesium is needed in human body, and naturally found in bone tissue. There have been some published reports also asserting the potential bone cell activation or bone healing effect of high magnesium ion concentrations. The classic method for achieving intertransverse process fusion involves autogenous iliac crest bone graft. Several investigations have been performed to enhance this type of autograft fusion. However, there is no research which has been undertaken to investigate the efficiency of pure magnesium particles in posterolateral spinal fusion. In this study, corrosion behavior of magnesium metal at the bone interface, the possibility of new bone cell formation and the degree of effectiveness in producing intertransverse process lumbar fusion in a sheep model have been investigated. Cortical bone screws were machined from magnesium alloy AZ31 extruded rod and implanted to hip-bones of sheep via surgery. Three months after surgery, the bone segments carrying these screws were removed from the sacrificed animals. Samples were sectioned to reveal Mg/bone interfaces and investigated using optical microscope, SEM-EDS and radiography. Optical and SEM images showed that there was a significant amount of corrosion on the magnesium screw. The elemental mapping results indicate, due to the presence of calcium and phosphorus elements, that there exists new bone formation at the interface. Furthermore, sixteen sheep were subjected to intertransverse process spinal fusions with pedicle screw fixation at various locations along their spines. Each animal was treated with 5cc autograft bone at one fusion level and 1cc magnesium+5cc autograft bone at the other. Six months after surgery, bone formation was evaluated by gross inspection and palpation, and radiological, histological, scanning electron microscopic and x-ray diffraction analyses. It may be stated that the potential for using useful corrosion of magnesium alloys in medical applications is expected to be significant.

Effect of Rolling Conditions on Microstructure and Mechanical Properties of HCC AZ31 Alloy Plate (압연조건에 따른 AZ31 연주판재의 미세조직 및 기계적 특성 변화)

  • Kim, Young Min;Chun, Eun Young;Yim, Chang Dong;You, Bong Sun;Lee, Je-hyun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The changes in microstructure and mechanical properties of AZ31 alloy subjected hot-rolling process were investigated. The AZ31 plates fabricated by horizontal continuous casting process were prepared and have hot-rolled from 30 mm to 1 mm in thickness under different processing conditions. At the rolling temperature of $400^{\circ}C$, little surface and side crack was observed up to 20% reduction rate. As total reduction and reduction rate increase to more than 75% and 20% pass, respectively, Grains were more uniformly refined through overall thickness, and particularly lots of shear bands were appeared to be inclined at less than $20^{\circ}C$ along the rolling direction. Average grain size of less than $5{\mu}m$ and tensile properties of YS ${\geq}$ 250 MPa, UTS ${\geq}$ 300 MPa and El. ${\geq}$ 13% were acquired for hot-rolled AZ31 sheets without post-heat treatment. Maximum intensity of (0002) pole figure was decreased with an increase in reduction rate, indicating the improvement of texture by means of high reduction rate.

The study on the recycle for machined chips and scraps of AZ91 magnesium alloy (AZ91 마그네슘합금 절분 및 스크랩의 재활용에 관한 연구)

  • 이두면;이준서;이치환
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 1994
  • This paper was focused to optimize hot extrusion condition of Mg machined chips and scraps as fundamental basic research for the recycle of Mg alloy. We have been performed to extrude at $300~380^{\circ}C$ temperature range under the extrusion ratio of 25:1 after cold-pressing AZ91 Mg machined chips and scraps. AZ91 Mg ingots was used as reference materials. Microstructure observation showed that the extruded machined chips were perfectly bonded and extruded materials became fine grain size($20\mu\textrm{m}$) by recrystallization during hot extrusion. The specimens extruded from the machined chips, scraps and Mg ingot indicated tensile strength of 330MPa and the elongation of 10% at room temperature.

  • PDF

Effects of Grain Refining Elements on the Mechanical Properties and Mold Filling Ability of AZ91D Alloy (AZ91D 합금의 기계적 성질 및 금형충전성에 미치는 결정립 미세화 원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.79-82
    • /
    • 2011
  • Various grain refining alloying elements such as Sr, TiB, and Ca were added to AZ91D and their effects on the mechanical properties and mold filling ability were investigated. The average grain sizes of those alloys were significantly reduced by the small amounts of the alloying elements. Ca addition was the most remarkably effective in reducing the grain size, however it was found to deteriorate the mold filling ability and tensile properties. TiB addition was observed to be the most efficient for both grain refinement and mold filling.

A Study on Plasma Electrolytic Oxidation Surface Treatments for Magnesium Alloy Eyeglass Frames (마그네슘 합금 안경테의 Plasma Electrolytic Oxidation 표면처리 효과 연구)

  • Kim, Ki-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.313-317
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the surface characteristics of plasma electrolytic oxidation (PEO) surface treatment on AZ31 magnesium alloy eyeglass frames. Methods: The plasma electrolytic oxidation (PEO) surface was created by varying the DC voltage. The oxidation layer of coating was measured using phase analysis by X-ray diffraction. The microstructural morphology was observed using a scanning electron microscopy. Coating layer and the concentration of elements were investigated using the energy dispersive X-ray spectra. Results: The MgO XRD peak was increased as the voltage increased, and the density of the surface oxide film was also increased. The changes in the composition of the EDS also showed a good agreement. Conclusions: The compound oxide crystallization of PEO oxide film layer was done by increasing formation of MgO as the voltage increased. The treatment at 65V and 60 sec showed the best results at surface state, contact angles and salt spray test.

Development of Prediction Model and Parameter Optimization for Second-Generation Magnetic Abrasive Polishing of Magnesium Alloy (마그네슘 합금강의 제2세대 자기연마에서 표면거칠기 예측모델 개발)

  • Kim, Sang-Oh;Lee, Sung-Ho;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • The conventional method of magnetic abrasive polishing is not suitable for non-magnetic materials because such polishing is basically possible when magnetic force exists and the magnetic force in non-magnetic materials is very low. The installation of an electromagnet under the working area of a non-magnetic material, which is called second-generation magnetic abrasive polishing in this study, can enhance the magnetic force. Experimental evaluation and optimization of process parameters for polishing magnesium alloy steel was performed by adopting the design of experiments and the response surface method. The results indicated that the intensity of the magnetic force and spindle speed are significant parameters that affect the improvement of surface roughness. A prediction model for the surface roughness of the magnesium alloy steel is developed using the second-order response surface method.

Effect of Ca additions on Mechanical Properties of Mg-4Al-2Sn-xCa Die-Casting Alloys (Ca 첨가에 따른 Mg-4Al-2Sn-xCa 다이캐스팅 합금의 기계적특성 연구)

  • Kim, Young-Min;Lee, Young-Cheol;Park, Yong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.293-301
    • /
    • 2011
  • Representative magnesium alloys applied to the die-casting are AZ91, AM60, etc., and the application of these alloys is restricted to components operating at moderate temperatures, due to grain boundary siding of ${\beta}$-phase($Mg_{17}Al_{12}$) at temperatures above $120^{\circ}C$. Heat-resistant magnesium alloys such as AE42, AE44 have been developed, but that have been too burdensome to produce because of the expensive rare earth materials. Research work for the development of low-priced heat-resistant magnesium alloy is actively in progress and positive results are being reported. This study aims to investigate the effect of Ca additions on mechanical properties of Mg-4Al-2Sn heat resistant magnesium alloys. Mg-4Al-2Sn alloys with Ca (0wt.%, 0.3wt.%, 0.7wt.%, 1wt.%) have been produced through the die-casting process for the development of low-priced heat-resistant magnesium alloy, and high temperature tensile tests are performed using the specimens. The results showed that mechanical properties of Mg-4Al-2Sn-xCa increased with the addition of Ca up to 0.7wt.% Ca and further addition of Ca deteriorated the mechanical properties of the alloys. A significant amount of porosity was observed at the sample with 1wt%. Ca and the longer freezing range of the alloy was believed to cause the formation of porosity.

A Study on the Mechanical Properties and Microstructures fabricating sheet of Magnesium based Alloy (AZ3l) (마그네슘 합금(AZ31) 판재의 기계적 특성 및 미세조직 연구)

  • 송재완;김창원;한정환
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.25-25
    • /
    • 2003
  • 마그네슘 합금은 결정구조가 HCP구조로 슬립면이 제한되어있어 상온에서의 가공이 용이하지 않다. 따라서 최근 마그네슘 합금의 미세 조직을 제어하기 위해 많은 연구가 수행되어 왔다. 본 연구에서는 구조용 재료 및 기능성 재료로 기대되는 마그네슘 합금(AZ3l)을 이용하여 주조로부터 압출·압연 과정으로의 연속적인 판재 성형공정을 실행하였다. 모든 공정에 대한 전형적인 기계적 특성을 평가하기 위하여 각 공정에서 재료의 인장실험을 실시하였으며 각 공정 후에 향상된 기계적 특성들을 규명하기 위하여 경도시험을 실시하였다 또한 각 공정에서의 대표적인 미세 조직을 관찰하여 결정립 미세화에 따른 기계적 물성의 향상을 확인하였다. 주조재, 압출판재, 압연판재의 인장강도는 189.3㎫, 257.9㎫ 그리고 234.㎫로 증가하였다가 다소 감소하지만, 연신율은 상대적으로 16.26%, 24.99% 그리고 27.16%의 50%에 가까운 주목할만한 증가를 나타낸다. 인장실험의 실험결과로부터 얻어진 가공경화지수로부터 대상 재료인 마그네슘 합금(AZ3l)에 대하여 DRX의 거동을 예측할 수 있었으며, 압출후 압연 판재의 경우 연한 재결정 조직으로 인하여 연신율의 대폭적인 증가를 확인 할 수 있었다.

  • PDF

A study for CD stud welding of Magnesium alloy for electric device case (전자기기 케이스를 위한 마그네슘 판재 스터드 용접 기술에 관한 연구)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Choe, Sang-Un
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Magnesium sheet used in electrical device due to mobility and EMF shielding characteristics. Magnesium case by press forming was advantageous compare with conventional die casting process, because of its thin gauge of wall and surface quality. But it need to makes the boss to fix inner part or assemble the case. CD stud welding was effective way for joining the boss to the thin gauge case of the electrical devices. In this study, we investigated the performances of the magnesium boss welder To measure the process parameters such as the force and the weld current, we design the monitoring system for CD stud welding. We test the characteristics of CD stud welding for AZ31 sheets at some variables. Finally we select the optimum welding range of magnesium sheets in CD stud welding process.

  • PDF