• Title/Summary/Keyword: AVERAGE FORCE

Search Result 952, Processing Time 0.03 seconds

Analysis of the Magnetic Force and Torque of a Rotatory Two-Phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.829-835
    • /
    • 2006
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced vibration due to its inherent structure. This paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

  • PDF

Effects of Cutting Conditions on Specific Cutting Force Coefficients in End Milling (엔드밀 가공시 절삭조건이 비절삭력계수에 미치는 영향)

  • Lee Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2004
  • For improvement of productivity and cutting tool lift, cutting force in end milling needs to be predicted accurately. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting force coefficients of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, fled, axial depth and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments.

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

A Study on Cutting Toll Damage Detection using Neural Network and Cutting Force Signal (신경망과 절삭력을 이용한 공구이상상태감지에 관한 연구.)

  • 임근영;문상돈;김성일;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.982-986
    • /
    • 1997
  • A method using cutting force signal and neural network for detection tool damage is proposed. Cutting force signal is gained by tool dynamometer and the signal is prepocessed to normalize. Cutting force signal is changed by tool state. When tool damage is occurred, cutting force signal goes up in comparison with that in normal state. However,the signal goes down in case of catastrophic fracture. These features are memorized in neural network through nomalizing couse. A new nomalizing method is introduced in this paper. Fist, cutting forces are sumed up except data smaller than threshold value, which is the cutting force during non-cutting action. After then, the average value is found by dividing by the number of data. With backpropagation training process, the neural network memorizes the feature difference of cutting force signal between with and without tool damage. As a result, the cutting force can be used in monitoring the condition of cutting tool and neural network can be used to classify the cutting force signal with and without tool damage.

  • PDF

Simulation of EPPR Valve Flow Force Characteristic using CFD Analysis (CFD를 이용한 EPPR 밸브 유동력 특성 분석 및 시뮬레이션)

  • Yoon, Ju Ho;Youn, Jang Won;Son, Ho Yeon;Kim, Dang Ju;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • Flow force is the additional unbalanced force acting on the valve spool by fluid flow, excluding the static pressure force that is offset on the spool land wall at the same magnitude. When designing the valve spool, it is assumed that the same average value of static pressure is applied to the inlet and outlet spool land wall in one chamber. However, the high velocity of the fluid flow by the inlet or outlet metering orifice creates unbalanced pressure distribution and generates additional force in the opposite direction to that of the solenoid attraction force. This flow force has a negative effect on the control performance of the EPPR valve, which needs to develop uniform output pressure along the entire spool control range. In this study, we developed a 3D model of the EPPR valve and conducted flow force characteristic analysis using CFD S/W (ANSYS FLUENT). The alleviated flow force model was derived by adjusting the design parameters of the spool notch.

Development of persimmon harvest apparatus -Development of detachment device (감 수확기구 개발(1) - 탈과장치 개발 -)

  • Woo, D.G.;Kim, T.H.
    • Current Research on Agriculture and Life Sciences
    • /
    • v.27
    • /
    • pp.1-6
    • /
    • 2009
  • Persimmon occupied the second largest cultivation area next to apple among the fruits in Korea. Since 70 % of its cultivating field is located at slope, the efficiency of its harvesting operation is very low. Also, the traditional persimmon harvest apparatus does not seem to be efficient to use due to a structural problem. In this paper, the author has analyzed the physical properties of persimmon friut-stem system and compared detachment force with developed persimmon harvest apparatus and traditional persimmon harvest apparatus in order to solve the problems mentioned above. The results of the research are summarized as follows : 1. The weight of the persimmon is shown as 157 g on average, the lengths of stem's major axis and minor axis is shown as 4.6 mm and 3.7 mm on average, respectively, sectional area of stem is shown as $13.9mm^2$ on average and the stem length is shown as 13.6 mm on average. 2 In case of the traditional persimmon harvest apparatus, the detachment force needed when a persimmon was detached from its stem was shown as 86.3 N on average. 3. In case of the developed persimmon harvest apparatus, detachment force needed when a persimmon was detached from its stem was shown as 72.6 N on average.

  • PDF

Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP) (CMP 연마입자의 마찰력과 연마율에 관한 영향)

  • Kim, Goo-Youn;Kim, Hyoung-Jae;Park, Boum-Young;Lee, Hyun-Seop;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

Study on the Activity Patterns of Masticatory Muscles according to the Levels of Occlusal Force (교합력 수준에 따른 저작근 근활성도에 관한 연구)

  • Byung-Gook Kim;Woo-Cheon Kee;Sung-Su Jung
    • Journal of Oral Medicine and Pain
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • In order to evaluate muscular activity patterns of masticatory muscles and asymmetry patterns of muscular activity according to the levels of occlusal force, twenty-one individuals of age ranged from 23 to 27 years were examined. They were selected according to the following criteria : 1) no symptoms of temporomandibular disorder, 2) complete dentition except third molars, 3) normal or Angle's class I molar relationship and 4) no experience of dental treatment. The electromyographic amplitudes was measured for evaluation of muscular activity and asymmetric patterns of masseter and anterior temporal muscle during unilateral clenching at the levels of 10%, 20%, 40% and 50% of the maximum occlusal force by use of electromyogram and bite force meter. The obtained results were as follows : 1. The muscle activity indices of masticatory muscles of clenching side at the clenching levels of 10%, 20% and 30% of the maximum occlusal force were -19.12, -9.87, -0.49%, so that activity of anterior temporal muscle was dominant than that of masseter muscle. At the levels of 40%, 50% of the maximum occlusal force, muscle activity indices were 4.68%, 6.70%, so that activity of masseter was dominant at all level and as the levels of occlusal force was increased, muscular activity index was tend to decrease. 2. In masseter, asymmetry indices of muscular activity at the levels of 10%, 20% of maximum occlusal force were -10.34 and -1.24%, so that muscular activity of non-clenching side were dominant and at the levels of 30%, 40% and 50% each of maximum occlusal force, muscular activity was dominant on clenching side as 4.68, 7.18 and 10.9%. In anterior temporal muscle, asymmetry indices were 33.38%, 25.46, 2095, 10.23 and 15.45% at the levels of 10%, 20%, 30%, 40% and 50% each of maximum occlusal force, so that activity of clenching 15.45% at the levels of 10%, 20%, 30%, 40% and 50% each of maximum occlusal force, so that activity of clenching side was dominant than that of non-clenching side at all levels, but as the levels of occlusal force was increased, asymmetry indices of muscular activity was tend to decrease. 3. Between both sides, average electromyographic amplitudes of masseter and anterior temporal muscle were correlated, so that as the levels of occlusal force was increased, average electromyographic amplitudes of both side in same muscle were increased proportionally. But asymmetry indices between muscular activities of masseter and anterior temporal muscle were not correlated.

  • PDF

Quadratic Programming Based Standard-cell Placement with New Additional Force (새로운 부가 힘을 사용한 Quadratic Programming 기반의 표준셀 배치)

  • Gang, Sang-Gu;Im, Jong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.34-43
    • /
    • 2002
  • This paper deals with a standard cell placement which is based on a quadratic programming. This paper proposes a new additional force to reduce the cell overlap and to get a uniform distribution of cells. The additional force is not concerned with interconnections between cells, but it is determined by the density of a placement area. In this paper, we modelled that the new additional force is a force which is caused by the dummy fixed cell. And it is used for the global placement. Proposed placement method is compared with TimberWolf v7.0 and Itools vl.4. Proposed placer achieved 7.5% average reduction in wirelength in non timing driven mode, 5.0% average reduction in wlrelength in timing driven mode compared to TimberWolf v7.0. And we got a comparable result to Itools vl.4.

The Immediate Effects of Ankle Restriction Using an Elastic Band on Ground Reaction Force during a Golf Swing

  • Yi, Kyungock;Kim, OkJa
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.191-195
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze the immediate effects of ankle restriction with an elastic band on ground reaction force during a golf swing. Method: There were five subjects who were teaching pros with an average golf score of 75. A force platform (9281B, Switzerland) was used. The independent variable was the presence of an elastic band. The dependent variables were three-dimensional ground reaction forces to analyze the transfer of momentum with the timing, control and coordination of the three forces. A paired t-test within subject repeated measure design was used via an SPSS 20.0. Results: Wearing an elastic band around one's ankles significantly makes shorter time differences between the moment of cross anterior / posterior forces and vertical force and median value of anterior / posterior forces during the backswing, between medial and lateral maximum and anterior / posterior force from the top of the back swing to the mid down swing, and creates an anterior / posterior maximum force. Conclusion: Wearing an elastic band around one's ankles affects control and coordination between three dimensional forces, and anterior force power according to each phase of the golf swing.