• Title/Summary/Keyword: ATRP

Search Result 73, Processing Time 0.017 seconds

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes (가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석)

  • Seo, Jin-Ah;Koh, Jong-Kwan;Koh, Joo-Hwan;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.

Anhydrous Crosslinked Polymer Electrolyte Membranes Based On ABA Triblock Copolymer (ABA 트리블록 공중합체를 이용한 무가습 가교형 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Lee, Do-Kyoung;Roh, Dong-Kyu;ShuI, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2009
  • ABA type triblock copolymer of poly(hydroxyl ethyl acrylate )-b-polystyrene-b-poly(hydroxyl ethyl acrylate), i.e. PHEA-b-PS-b-PHEA, was synthesized throughatom transfer radical polymerization (ATRP). This block copolymer was thermally crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification between the -OH groups of PHEA in block copolymer and the -COOH groups of IDA. Upon doping with ${H_3}{PO_4}$ to form imidazole-${H_3}{PO_4}$ complexes, the proton conductivity of membranes continuously increased with increasing ${H_3}{PO_4}$ content. The PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ polymer membrane with [HEA]:[IDA]:[${H_3}{PO_4}$]=3:4:4 exhibited a maximum proton conductivity of 0.01 S/cm at $100^{\circ}C$ under anhydrous conditions. Thermal gravimetric analysis (TGA) shows that the PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ complex membranes were thermally stable up to $350^{\circ}C$, indicating their applicability in fuel cells.

Anhydrous Polymer Electrolyte Membranes Prepared From Polystyrene-b-Poly (hydroxyl ethyl methacrylate) Block Copolymer (Polystyrene-b-Poly(hydroxyl ethyl methacrylate) 블록 공중합체를 이용한 무가습 고분자 전해질막)

  • Kim, Jong-Hak;Seo, Jin-Ah;Lee, Do-Kyung;Roh, Dong-Kyu;Shul, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.302-309
    • /
    • 2009
  • A block copolymer of polystyrene-b-poly (hydroxyl ethyl methacrylate), PS-b-PHEMA, was synthesized via atom transfer radical polymerization (ATRP) and crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via esterification of the -OH groups of PHEMA in the block copolymer and the -COOH groups of IDA. Upon doping with $H_3PO_4$ to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased as the content of $H_3PO_4$ increased. In addition, both the tensile strength and the elongation at break increased with IDA content. A proton conductivity of 0.01 S/cm at $100^{\circ}C$ was obtained for the PS-b-PHEMA/IDA/$H_3PO_4$ membrane with [HEMA]:[IDA]:[$H_3PO_4$] = 3:4:4 under anhydrous conditions. All of the PS-b-PHEMA/IDA/$H_3PO_4$ membranes were thermally stable up to $350^{\circ}C$, as revealed by thermal gravimetric analysis (TGA).