• Title/Summary/Keyword: ATP synthase

Search Result 84, Processing Time 0.02 seconds

Antiplatelet Activity of 2-(4-Cyanophenyl) amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) (2-(4-시아노페닐) 아미노 -1,4-나프탈렌디온-3-피리디니움 퍼클로레이트 (PQ5)의 항혈소판작용)

  • 김도희;이수환;최소연;문창현;문창현;김대경;유충규
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.809-817
    • /
    • 1999
  • The effect of 2-(4-cyanophenyl)amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) on pla-telet aggregation and its action mechanisms were investigated with rat platelet. PQ5 inhibited the platelet aggregation induced by collagen ($6{\;}{\mu\textrm{g}}/ml$), thrombin (0.4 U/ml) and A23187 ($3{\mu}M$) in concentration-dependent manner with $IC_{50}$ values of 5.50, 25.89 and $37.12{\;}{\mu}M$, respectively. PQ5 also significantly reduced the thromboxane $A_2$ (TXA2) formation in a concentration dependent manner. The collagen-induced arachidonic acid (AA) release in [-3H]-AA incorporated platelet, an indication of the phospholipase $A_2$ activity, was decreased by PQ5 pretreatment PQ5 significantly inhibited the activity of thormboxane synthase only at high concentration ($100{\mu}M$), but did not affect the cyclooxygenase activity at all. Collagen-induced ATP release was significantly reduced by PQ5. Calcium-induced platelet aggregation experiment suggests that the elevation of intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) by collagen stimulation is decreased by the pretreatment of PQ5, which is due to the inhibition of calcium release from intracellular store and influx from outside of the cell. PQ5 did not showed the effect of anticoagulation as prothrombin time (PT) or activated partial thromboplastin time (APTT). Form these results, it is suggested that PQ5 exerts its antiplatelet activity through the inhibition of the intracellular $Ca^{2+}$ mobilization and the decrease of the $TXA_2$ synthesis.

  • PDF

Phallus chiangmaiensis sp. nov. and a Record of P. merulinus in Thailand

  • Sommai, Sujinda;Khamsuntorn, Phongsawat;Somrithipol, Sayanh;Luangsa-ard, Janet Jennifer;Pinruan, Umpawa
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.439-453
    • /
    • 2021
  • During the rainy season in Thailand, specimens of Phallus chiangmaiensis sp. nov. and P. merulinus were collected from Chiang Mai and Samut Sakhon Provinces, respectively. Molecular phylogenetic analyses based on sequences of the nuclear ribosomal large subunit (LSU), nuclear ribosomal 5.8S gene including the internal transcribed spacer regions 1 and 2 (ITS), and the protein-coding gene atp6 (mitochondrial adenosine triphosphate [ATP] synthase subunit 6) support the placement of the new species within Phallus. Phallus chiangmaiensis has a well-developed white indusium and campanulated caps with reticulate surfaces. It differs morphologically from the related species, as supported by the phylogenetic data. Phallus merulinus is reported here as a species that was re-encountered in Thailand. The descriptions of the species are accompanied by illustrations of macro- and micro- morphological features, and a discussion of the related taxa is presented.

Effects of dietary leucine supplementation on the hepatic mitochondrial biogenesis and energy metabolism in normal birth weight and intrauterine growth-retarded weanling piglets

  • Su, Weipeng;Xu, Wen;Zhang, Hao;Ying, Zhixiong;Zhou, Le;Zhang, Lili;Wang, Tian
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The study was conducted to evaluate the effects of dietary leucine supplementation on mitochondrial biogenesis and energy metabolism in the liver of normal birth weight (NBW) and intrauterine growth-retarded (IUGR) weanling piglets. MATERIALS/METHODS: A total of sixteen pairs of NBW and IUGR piglets from sixteen sows were selected according to their birth weight. At postnatal day 14, all piglets were weaned and fed either a control diet or a leucine-supplemented diet for 21 d. Thereafter, a $2{\times}2$ factorial experimental design was used. Each treatment consisted of eight replications with one piglet per replication. RESULTS: Compared with NBW piglets, IUGR piglets had a decreased (P < 0.05) hepatic adenosine triphosphate (ATP) content. Also, IUGR piglets exhibited reductions (P < 0.05) in the activities of hepatic mitochondrial pyruvate dehydrogenase (PDH), citrate synthase (CS), ${\alpha}$-ketoglutarate dehydrogenase (${\alpha}$-KGDH), malate dehydrogenase (MDH), and complexes I and V, along with decreases (P < 0.05) in the concentration of mitochondrial DNA (mtDNA) and the protein expression of hepatic peroxisome proliferator-activated receptor-${\gamma}$ coactivator $1{\alpha}$ (PGC-$1{\alpha}$). Dietary leucine supplementation increased (P < 0.05) the content of ATP, and the activities of CS, ${\alpha}$-KGDH, MDH, and complex V in the liver of piglets. Furthermore, compared to those fed a control diet, piglets given a leucine-supplemented diet exhibited increases (P < 0.05) in the mtDNA content and in the mRNA expressions of sirtuin 1, PGC-$1{\alpha}$, nuclear respiratory factor 1, mitochondrial transcription factor A, and ATP synthase, $H^+$ transporting, mitochondrial F1 complex, ${\beta}$ polypeptide in liver. CONCLUSIONS: Dietary leucine supplementation may exert beneficial effects on mitochondrial biogenesis and energy metabolism in NBW and IUGR weanling piglets.

Cooperativity of ${\alpha}$- and ${\beta}$-Subunits of Group II Chaperonin from the Hyperthermophilic Archaeum Aeropyrum pernix K1

  • Kim, Jeong-Hwan;Lee, Jin-Woo;Shin, Eun-Jung;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.212-217
    • /
    • 2011
  • ${\alpha}$ and ${\beta}$-subunits (ApCpnA and ApCpnB) are group II chaperonins from the hyperthermophilic archaeum Aeropyrum pernix K1, specialized in preventing the aggregation and inactivation of substrate proteins under conditions of transient heat stress. In the present study, the cooperativity of ${\alpha}$- and ${\beta}$-subunits from the A. pernix K1 was investigated. The ApCpnA and ApCpnB chaperonin genes were overexpressed in E. coli Rosetta and Codonplus (DE3), respectively. Each of the recombinant ${\alpha}$- and ${\beta}$-subunits was purified to 92% and 94% by using anionexchange chromatography. The cooperative activity between purified ${\alpha}$- and ${\beta}$-subunits was examined using citrate synthase (CS), alcohol dehydrogenase (ADH), and malate dehydrogenase (MDH) as substrate proteins. The addition of both ${\alpha}$- and ${\beta}$-subunits could effectively protect CS and ADH from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively, and MDH from thermal inactivation at $80^{\circ}C$C and $85^{\circ}C$. Moreover, in the presence of ATP, the protective effects of ${\alpha}$- and ${\beta}$-subunits on CS from thermal aggregation and inactivation, and ADH from thermal aggregation, were more enhanced, whereas cooperation between chaperonins and ATP in protection activity on ADH and MDH (at $85^{\circ}C$) from thermal inactivation was not observed. Specifically, the presence of both ${\alpha}$- and ${\beta}$- subunits could effectively protect MDH from thermal inactivation at $80^{\circ}C$ in an ATP-dependent manner.

GSK3β Inhibitor Peptide Protects Mice from LPS-induced Endotoxin Shock

  • Ko, Ryeojin;Jang, Hyun Duk;Lee, Soo Young
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Background: Glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) is a ubiquitous serine/threonine kinase that is regulated by serine phosphorylation at 9. Recent studies have reported the beneficial effects of a number of the pharmacological $GSK3{\beta}$ inhibitors in rodent models of septic shock. Since most of the $GSK3{\beta}$ inhibitors are targeted at the ATP-binding site, which is highly conserved among diverse protein kinases, the development of novel non-ATP competitive $GSK3{\beta}$ inhibitors is needed. Methods: Based on the unique phosphorylation motif of $GSK3{\beta}$, we designed and generated a novel class of $GSK3{\beta}$ inhibitor (GSK3i) peptides. In addition, we investigated the effects of a GSK3i peptide on lipopolysaccharide (LPS)-stimulated cytokine production and septic shock. Mice were intraperitoneally injected with GSK3i peptide and monitored over a 7-day period for survival. Results: We first demonstrate its effects on LPS-stimulated pro-inflammatory cytokine production including interleukin (IL)-6 and IL-12p40. LPS-induced IL-6 and IL-12p40 production in macrophages was suppressed when macrophages were treated with the GSKi peptide. Administration of the GSK3i peptide potently suppressed LPS-mediated endotoxin shock. Conclusion: Collectively, we present a rational strategy for the development of a therapeutic GSK3i peptide. This peptide may serve as a novel template for the design of non-ATP competitive GSK3 inhibitors.

Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

  • Jiao, Han-Yi;Kim, Dong Hyun;Ki, Jung Suk;Ryu, Kwon Ho;Choi, Seok;Jun, Jae Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.341-346
    • /
    • 2014
  • Lubiprostone is a chloride ($Cl^-$) channel activator derived from prostaglandin $E_1$ and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid $EP_1$, $EP_2$, $EP_3$, and $EP_4$ antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [$K^+$] channel blocker) and apamin (a calcium [$Ca^{2+}$]-dependent $K^+$ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive $K^+$ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive $K^+$ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive $K^+$ channel through a prostanoid EP receptor-independent mechanism.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

NMR-based metabolomic profiling of the liver, serum, and urine of piglets treated with deoxynivalenol

  • Jeong, Jin Young;Kim, Min Seok;Jung, Hyun Jung;Kim, Min Ji;Lee, Hyun Jeong;Lee, Sung Dae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.455-461
    • /
    • 2018
  • Deoxynivalenol (DON), a Fusarium mycotoxin, causes health hazards for both humans and livestock. Therefore, the aim of this study was to investigate the metabolic profiles of the liver, serum, and urine of piglets fed DON using proton nuclear magnetic resonance ($^1H-NMR$) spectroscopy. The $^1H-NMR$ spectra of the liver, serum, and urine samples of the piglets provided with feed containing 8 mg DON/kg for 4 weeks were aligned and identified using the icoshift algorithm of MATLAB $R^2013b$. The data were analyzed by multivariate analysis and by MetaboAnalyst 4.0. The DON-treated groups exhibited discriminating metabolites in the three different sample types. Metabolic profiling by $^1H-NMR$ spectroscopy revealed potential metabolites including lactate, glucose, taurine, alanine, glycine, glutamate, creatine, and glutamine upon mycotoxin exposure (variable importance in the projection, VIP > 1). Forty-six metabolites selected from the principal component analysis (PCA) helped to predict sixty-five pathways in the DON-treated piglets using metabolite sets containing at least two compounds. The DON treatment catalyzed the citrate synthase reactions which led to an increase in the acetate and a decrease in the glucose concentrations. Therefore, our findings suggest that glyceraldehyde-3-phosphate dehydrogenase, citrate synthase, ATP synthase, and pyruvate carboxylase should be considered important in piglets fed DON contaminated feed. Metabolomics analysis could be a powerful method for the discovery of novel indicators underlying mycotoxin treatments.

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • Yun, Sang-Seon;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Identification of Three Positive Regulators in the Geldanamycin PKS Gene Cluster of Streptomyces hygroscopicus JCM4427

  • Kim, Won-Cheol;Lee, Jung-Joon;Paik, Sang-Gi;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1484-1490
    • /
    • 2010
  • In the Streptomyces hygroscopicus JCM4427 geldanamycin biosynthetic gene cluster, five putative regulatory genes were identified by protein homology searching. Among those genes, gel14, gel17, and gel19 are located downstream of polyketide synthase genes. Gel14 and Gel17 are members of the LAL family of transcriptional regulators, including an ATP/GTP-binding domain at the N-terminus and a DNA-binding helix-turn-helix domain at the C-terminus. Gel19 is a member of the TetR family of transcriptional regulators, which generally act to repress transcription. To verify the biological significance of the putative regulators in geldanamycin production, they were individually characterized by gene disruption, genetic complementation, and transcriptional analyses. All three genes were confirmed as positive regulators of geldanamycin production. Specifically, Gel17 and Gel19 are required for gel14 as well as gelA gene expression.