Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10010

Cooperativity of ${\alpha}$- and ${\beta}$-Subunits of Group II Chaperonin from the Hyperthermophilic Archaeum Aeropyrum pernix K1  

Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University)
Lee, Jin-Woo (Department of Biomaterial Control, Dong-Eui University)
Shin, Eun-Jung (Department of Biomaterial Control, Dong-Eui University)
Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.2, 2011 , pp. 212-217 More about this Journal
Abstract
${\alpha}$ and ${\beta}$-subunits (ApCpnA and ApCpnB) are group II chaperonins from the hyperthermophilic archaeum Aeropyrum pernix K1, specialized in preventing the aggregation and inactivation of substrate proteins under conditions of transient heat stress. In the present study, the cooperativity of ${\alpha}$- and ${\beta}$-subunits from the A. pernix K1 was investigated. The ApCpnA and ApCpnB chaperonin genes were overexpressed in E. coli Rosetta and Codonplus (DE3), respectively. Each of the recombinant ${\alpha}$- and ${\beta}$-subunits was purified to 92% and 94% by using anionexchange chromatography. The cooperative activity between purified ${\alpha}$- and ${\beta}$-subunits was examined using citrate synthase (CS), alcohol dehydrogenase (ADH), and malate dehydrogenase (MDH) as substrate proteins. The addition of both ${\alpha}$- and ${\beta}$-subunits could effectively protect CS and ADH from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively, and MDH from thermal inactivation at $80^{\circ}C$C and $85^{\circ}C$. Moreover, in the presence of ATP, the protective effects of ${\alpha}$- and ${\beta}$-subunits on CS from thermal aggregation and inactivation, and ADH from thermal aggregation, were more enhanced, whereas cooperation between chaperonins and ATP in protection activity on ADH and MDH (at $85^{\circ}C$) from thermal inactivation was not observed. Specifically, the presence of both ${\alpha}$- and ${\beta}$- subunits could effectively protect MDH from thermal inactivation at $80^{\circ}C$ in an ATP-dependent manner.
Keywords
Chaperonin; hyperthermophilic archaeum; protein folding; Aeropyrum pernix;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Jeon, S. J. and K. Ishikawa. 2005. Characterization of the family I inorganic pyrophosphatase from Pyrococcus horikoshii OT3. Archaea 1: 385-389.   DOI   ScienceOn
2 Fenton, W. A. and A. L. Horwich. 1997. GroEL-mediated protein folding. Protein Sci. 6: 743-760.
3 Geissler, S., K. Siegers, and E. Schiebel. 1998. A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J. 17: 952-966.   DOI
4 Gething, M. J. and J. Sambrook. 1992. Protein folding in the cell. Nature 355: 33-45.   DOI   ScienceOn
5 Gutsche, I., L. O. Essen, and W. Baumeister. 1999. Group II chaperonins: New TRiC(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312.   DOI   ScienceOn
6 Hansen, W. J., N. J. Cowan, and W. J. Welch. 1999. Prefoldinnascent chain complexes in the folding of cytoskeletal proteins. J. Cell Biol. 145: 265-277.   DOI   ScienceOn
7 Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578-586.   DOI
8 Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366.   DOI   ScienceOn
9 Ellis, R. J. 1996. The Chaperonins. Academic Press, San Diego, USA.
10 Ditzel, L., J. Lowe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93: 125-138.   DOI   ScienceOn
11 Ellis, R. J. and F. U. Hartl. 1996. Protein folding in the cell: competing models of chaperonin function. FASEB J. 10: 20-26.   DOI
12 Archibald, J. M., J. M. Logsdon, and F. W. Doolittle. 1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9: 1053-1056.   DOI   ScienceOn
13 Bigotti, M. G. and A. R. Clarke. 2005. Cooperativity in the thermosome. J. Mol. Biol. 348: 13-26.   DOI   ScienceOn
14 Kim, J. H., E. J. Shin, S. J. Jeon, Y. H. Kim, P. Kim, C. H. Lee, and S. W. Nam. 2009. Overexpression, purification, and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Biotechnol. Bioprocess Eng. 14: 551-558.   DOI
15 Bigotti, M. G. and A. R. Clarke. 2008. Chaperonins: The hunt for the group II mechanism. Arch. Biochem. Biophys. 474: 331-339.   DOI   ScienceOn
16 Bukau, B., E. Deuerling, C. Pfund, and E. A. Craig. 2000. Getting newly synthesized proteins into shape. Cell 101: 119-122.   DOI   ScienceOn
17 Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-579.   DOI   ScienceOn
18 Hartl, F. U. and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295: 1852-1858.   DOI   ScienceOn
19 Horovitz, A. and K. R. Willison. 2005. Allosteric regulation of chaperonins. Curr. Opin. Struct. Biol. 15: 646-651.   DOI   ScienceOn
20 Kawarabayasi, Y., Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83-101, 145-152.   DOI   ScienceOn
21 Kim, S., K. R. Willison, and A. L. Horwich. 1994. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543-548.   DOI
22 Mogk, A., B. Bukau, and E. Deuerling. 2001. Cellular functions of cytosolic E. coli chaperones, pp. 1-34. In P. Lund (ed.). Molecular Chaperones in the Cell. Oxford University Press, Oxford.
23 Phipps, B. M., D. Typke, R. Heger, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister. 1993. Structure of a molecular chaperone from a thermophilic archaebacterium. Nature 361: 475-477.   DOI   ScienceOn
24 Kim, S. Y., N. Ayyadurai, M. A. Heo, S. H. Park, Y. J. Jeong, and S. G. Lee. 2009. Improving the productivity of recombinant protein in Escherichia coli under thermal stress by coexpressing GroELS chaperone system. J. Microbiol. Biotechnol. 19: 72-77.
25 Kubota, H., G. Hynes, and K. Willison. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3-16.   DOI   ScienceOn
26 Laksanalamai, P., T. A. Whitehead, and F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2: 315-324.   DOI   ScienceOn
27 Ranson, N. A., H. E. White, and H. R. Saibil. 1998. Chaperonins. Biochem. J. 333: 233-242.   DOI
28 Shin, E. J., J. H. Kim, S. J. Jeon, Y. H. Kim, and S. W. Nam. 2009. Prevention of in vitro thermal aggregation and inactivation of foreign proteins by the hyperthermophilic group II chaperonin $\alpha$-subunit from Aeropyrum pernix K1. Biotechnol. Bioprocess Eng. 14: 702-707.   DOI
29 Shin, E. J., J. H. Kim, S. J. Jeon, Y. T. Kim, Y. H. Kim, and S. W. Nam. 2010. Overexpression, purification, and characterization of $\beta$-subunit of group II chaperonin from hyperthermophilic Aeropyrum pernix K1. Prot. Expr. Purif. 20: 542-549.
30 Martin-Benito, J., J. Boskovic, P. Gomez-Puertas, J. L. Carrascosa, C. T. Simons, S. A. Lewis, F. Bartolini, N. J. Cowan, and J. M. Valpuesta. 2002. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21: 6377-6386.   DOI
31 Yoshida, T., R. Kawaguchi, H. Taguchi, M. Yoshida, T. Yasunaga, T. Wakabayashi, M. Yohda, and T. Maruyama. 2002. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J. Mol. Biol. 315: 73-85.   DOI   ScienceOn
32 Sigler, P. B., Z. Xu, H. S. Rye, S. G. Burston, W. A. Fenton, and A. L. Horwich. 1998. Structure and function in GroELmediated protein folding. Annu. Rev. Biochem. 67: 581-608.   DOI   ScienceOn
33 Vainberg, I. E., S. A. Lewis, H. Rommelaere, C. Ampe, J. Vandekerckhove, H. L. Klein, and N. J. Cowan. 1998. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93: 863-873.   DOI   ScienceOn
34 Valpuesta, J. M., J. Martin-Benito, P. Gomez-Puertas, J. L. Carrascosa, and K. R. Willison. 2002. Structure and function of a protein folding machine: The eukaryotic cytosolic chaperonin CCT. FEBS Lett. 529: 11-16.   DOI   ScienceOn
35 Yoon, H. J., J. Y. Hong, and S. R. Ryu. 2008. Effects of chaperones on mRNA stability and gene expression in Escherichia coli. J. Microbiol. Biotechnol. 18: 228-233.