• Title/Summary/Keyword: ATP Release

검색결과 133건 처리시간 0.022초

황금약침액(黃芩藥鍼液)이 가토(家兎)의 신피질절편(腎皮質切片)에서 Oxidant로 유발된 유기양이온의 이동장애에 미치는 영향(影響) (Effect of Scutellaria baicalensis Georgi Extract on Oxidant-Induced Inhibition of Organic Cation in Rabbit Renal Cortical Slices)

  • 손인석;조태성;권혜연;조미형;윤현민;장경전;송춘호;안창범
    • Journal of Acupuncture Research
    • /
    • 제19권2호
    • /
    • pp.211-220
    • /
    • 2002
  • Objective : This study was undertaken to determine whether Scutellaria baicalensis Georgi extract (SbG) exerts the protective effect against oxidant-induced alterations in organic cation transport in the renal proximal tubule. Methods : Organic cation transport was estimated by examining alterations in tetraethylammonium (TEA) uptake in rabbit renal cortical slices. The slices were treated with 0.2 mM tBHP for 60 min at $37^{\circ}C$. tBl-IP caused an inhibition in TEA uptake by renal cortical slices. Such an effect was accompanied by depressed Na+-K+-ATPase activity and ATP depletion. Result : SbG prevented tBHP-induced inhibition of TEA uptake in a dose-dependent manner at the concentration ranges of 0.05-0.1%. SbG also prevented H2O2-induced reduction in TEA uptake. tBHP-induced inhibition of Na+-K+-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. Oxidants increased LDH release, which was blocked by SbG. Oxidants caused a significant increase in lipid peroxidation and its effect was prevented by SbG. Conclusion : These results suggest that SbG prevents oxidant-induced alterations in organic cation transport in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.

  • PDF

Kinesin 모터 단백질의 조절 기전 (The Regulation Mechanisms of Kinesin Motor Proteins)

  • 박상준;석정수;문일수;석대현
    • 생명과학회지
    • /
    • 제27권7호
    • /
    • pp.840-848
    • /
    • 2017
  • 세포내 수송 기구는 세포의 작용과 생존에 필수적이다. 이러한 세포내 수송은 긴 미세소관을 따라서 운반체를 운반하는 미세소관 의존 분자 모터 단백질인 kinesin과 cytoplasmic dynein에 의하여 이루어진다. Kinesin은 ATP 의존적으로 미세소관의 plus-end방향으로 이동하는 모터 단백질로 세포내 소기관, 분비소포, RNA 복합체, 단백질 복합체들을 수송한다. Kinesins에 의한 다양한 운반체의 수송의 이상은 세포의 기능 이상과 연관된다. Kinesins에 의한 운반체 수송의 기본 단계는: 운반체 혹은 adaptor 단백질과의 결합, kinesin 기능 활성화와 미세소관을 따라서 이동, 그리고 올바른 위치에서 운반체와의 분리 단계로 나뉘어 진다. 최근의 연구결과들에서 kinesin 모터 기능 활성화, 운반체와의 결합, 운반체와의 해리 기전이 확인되고 있으며 세포내 운반체 수송은 kinesin과 운반체를 연결하는 adaptor 단백질에 의하여서도 조절된다. 단백질 인산화 효소, 탈 인산화 효소를 포함하는 kinesin 모터 활성 조절 단백질들은 kinesin의 인산화 혹은 탈 인산화를 통하여 직접적으로 세포내 수송을 조절하거나, c-Jun NH-terminal kinase-interacting proteins (JIPs)와 같은 adaptor 단백질들과 미세소관의 간접적 수식을 통하여 세포내 수송을 조절하기도 한다. 이러한 연구결과들은 세포의 기능과 형태 유지에 관여하는 kinesin에 의한 다양한 세포내 수송 조절 기전을 이해하는데 기초적인 토대가 된다. 또한 각각의 kinesin에 대한 조절 기전을 밝히는 것은 세포생물학과 신경생리학을 이해하는데 중요하므로 본 종설에서는 kinesin에 의한 세포내 수송을 조절하는 단백질과 kinesin과 수송체와의 결합이 어떻게 조절되는지를 고찰하고자 한다.

콜라겐으로 유도한 사람 혈소판 응집에 미치는 Scopoletin의 억제 효과 (Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation)

  • 권혁우;신정해;박창은;이동하
    • 대한임상검사과학회지
    • /
    • 제51권1호
    • /
    • pp.34-41
    • /
    • 2019
  • 혈소판 응집은 혈관 손상의 경우 지혈 플러그 형성에 필수적이다. 그러나, 과도한 혈소판 응집은 혈전증, 죽상 동맥 경화증 및 심근 경색과 같은 순환기 장애를 일으킬 수도 있다. Scopoletin은 Scopolia 또는 Artemisia 속 식물의 뿌리에서 발견되는 성분으로, 항응고 및 항말라리아 작용을 가지는 것으로 알려져 있다. 본 연구는 collagen에 의해 유발된 혈소판 응집에 scopoletin이 미치는 영향을 조사하였다. Scopoletin은 활성화된 혈소판에서 생성되는 응집 유도 분자인 thromboxane $A_2$ ($TXA_2$) 및 세포 내 $Ca^{2+}$ 동원 ($[Ca^{2+}]_i$)의 하향 조절을 통해 항 혈소판 효과를 나타내었다. 한편, scopoletin은 세포 내 $Ca^{2+}$-길항제인 것으로 알려져 있는 cyclic adenosine monophosphate(cAMP)와 cyclic guanosine monophosphate (cGMP) 수치를 증가시켰다. 특히, scopoletin은 cGMP보다 cAMP 수준을 강력하게 증가함으로써 콜라겐에 의해 유발된 사람 혈소판 응집에서의 ${\alpha}IIb/{\beta}_3$에 대한 피브리노겐 결합을 억제하였다. 또한, scopoletin은 용량 의존적으로 collagen에 의해 증가된 adenosine trisphosphate (ATP)의 방출을 억제하였다. 이 결과는 혈소판 내 과립 분비를 통한 응집 증폭작용이 scopoletin에 의해 억제되었음을 의미한다. 따라서, 본 연구는 scopoletin이 강력한 항혈소판 효과를 가지며 혈소판-유래의 혈관 질환을 예방할 가능성이 크다는 것을 입증하였다.

PI3K/Akt 및 MAPK 기전 조절을 통한 Artesunate의 콜라겐 유도의 사람 혈소판 응집 억제효과 (Artesunate inhibits collagen-induced human platelets aggregation through regulation of PI3K/Akt and MAPK pathway)

  • 이동하
    • Journal of Applied Biological Chemistry
    • /
    • 제65권1호
    • /
    • pp.57-62
    • /
    • 2022
  • 혈소판의 과도한 활성화 및 응집은 심혈관계 질환의 주요원인이 된다. 따라서, 혈소판 활성화 및 응집을 억제하는 것은 심혈관계 질환을 예방하고 치료하는데 있어서 매력적인 치료 표적으로 여겨진다. 특히, 혈관 내피세포에서 분비되는 collagen에 의한 강력한 혈소판 활성화와 응집이 혈관질환에서 특징적이다. Artesunate는 Artemisia 또는 Scopolia 속 식물의 뿌리에서 추출한 화합물이며, 항암 및 알츠하이머 병 분야에서 효과가 있다고 보고된 바 있다. 그러나, artesunate가 collagen 유도의 혈소판 활성화와 응집에 미치는 영향과 그 기전에 대해서는 규명된 바가 없다. 본 연구에서는 collagen이 유도하는 사람 혈소판 응집에 있어 artesunate이 미치는 영향을 확인하였고, artesunate의 작용 기전을 명확히 하였다. Artesunate은 혈소판가 활성화 될 때 신호 전달 과정에 작용한다고 알려진 인단백질인 PI3K/Akt 및 MAPK의 인산화를 억제하였다. 또한, artesunate는 TXA2 생성을 감소시켰고, ATP 및 serotonin 방출 등의 혈소판 내 과립 분비를 감소시켰다. 그 결과, artesunate는 혈관 내피세포에서 분비되는 강력한 응집 유도 물질인 collagen으로 유도된 혈소판 응집을 106.41 μM의 IC50로 강력하게 억제하였다. 이 결과들을 통해, artesunate가 혈관 손상을 통해 일어나는 사람 혈소판의 활성화 및 응집을 억제하는 데 유효한 항혈전 물질로 가치가 있음을 제안한다.

허혈성 자극에 의한 심방이뇨 호르몬 분비 반응의 특성 (Characteristics of hypoxia-induced ANP Secretion in Perfused Beating Atria)

  • 김공수;김민호;김창곤;김석기;조경우;최훈
    • Journal of Chest Surgery
    • /
    • 제33권5호
    • /
    • pp.398-406
    • /
    • 2000
  • Background: Cardiac atrium is an endocrine gland secreting a family of natriuretic peptides. The secretion of atrial natriuretic peptide(ANP) had been shown to be controlled by variable factors. The change in atrial dynamics have been considered as one of the most prominent stimuli for the stimulation of ANP secretion. Hypoxic stress has been shown to increase cardiac ANP secretion. However, the mechanism by which hypoxia increases ANP secretion cardiac ANP secretions. However, the mechanism by which hypoxia increases ANP secretion has not to be defined. Therefore, the purpose of the present study was tow-fold: to develop a protocol to defined the effect of hypoxia on ANP secretion in perfused beating rabbit atria and to clarify the mechanism responsible for the accentuation by hypoxia of ANP secretion. Material and Method: Experiments have been done in perfused beating rabbit atria. ANP was measured by radioimmunoassay. Result: Hypoxic stimulus with nitrogen decreased atrial stroke volume. The decrease in atrial stroke volume recovered basal level during the period of recovery with oxygen. ANP secretion and the concentration of perfusate ANP in terms of extracellular fluid(ECF) translocation which reflects the rate of myocytic release of ANP were increased by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled by hypoxia and returned to basal levels during the recovery. Changes in ECF translocation paralleled to that of atrial stroke volume. At the start of recovery in atrial storke volume, ECF tranalocation incrased for several minutes. The above responses were stable and reproducible. Glibenclamide treatment prevented the recovery in atrial stroke volume. Increments by hypoxia of ANP secretion and ANP concentration were suppressed by glibenclamide. Conclusion: These results indicate that hypoxia incrased atrial myocytic ANP release and that the mechanism responsible for the accentuation is partially related to the change in K+ATP channel activity.

  • PDF

Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa

  • Lee, Dong-Ha;Kim, Hyun-Hong;Lim, Deok Hwi;Kim, Jong-Lae;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.60-70
    • /
    • 2015
  • In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP ($Ser^{157}$) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP ($Ser^{157}$) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to ${\alpha}IIb/{\beta}3$. Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to ${\alpha}IIb/{\beta}3$are due to stimulation of cAMP-dependent phosphorylation of VASP ($Ser^{157}$), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권3호
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

Kinetic Analysis about the Bidirectional Transport of 1-Anilino-8-naphthalene Sulfonate (ANS) by Isolated Rat Hepatocytes

  • Lee, Pung-Sok;Song, Im-Sook;Shin, Tae-Ha;Chung, Suk-Jae;Shim, Chang-Koo;Song, Sukgil;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • 제26권4호
    • /
    • pp.338-343
    • /
    • 2003
  • The purpose of the present study was to investigate the bidirectional transport of 1-anilino-8-naphthalene sulfonate (ANS) using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was saturable, with a $K_m of 29.1\pm3.2 \mu M and V_{max} of 2.9\pm0.1$ mmol/min/mg protein. Subsequently, the initial efflux rate of ANS from isolated hepatocytes was determined by resuspending preloaded cells to 3.0% (w/v) BSA buffer. The efflux process for total ANS revealed a little saturability. The mean value of the efflux clearance was $2.2\pm0.1 \mu$ L/min/mg protein. The efflux rate of ANS from hepatocytes was markedly decreased at $4^{\circ}C$, indicating that the apparent efflux of ANS might not be attributed to the release of ANS bound to the cell surface, but to the efflux of ANS from intracellular space. The efflux clearance was furthermore corrected for the unbound intracellular ANS concentration on the basis of its binding parameters to cytosol. The relation between efflux rate and unbound ANS concentration was fitted well to the Michaelis-Menten equation with a saturable and a nonsaturable components. The $V_{max} and K_m$ values were 0.54 mmol/min/mg protein, and 10.0 $\mu$ M, respectively. Based on the comparison of the ratios of $V_{max} to K_m (V_{max}/K_m)$ corresponding to the transport clearance, the influx clearance was two times higher than the efflux clearance. Together with our preliminary studies that ATP suppression in hepatocytes substantially inhibited ANS influx rate, we concluded that the hepatic uptake of ANS is actively taken up into hepatocytes via the carrier mediated transport system.

Influence of Apamin on Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Eun-Sook;Park, Hyeon-Gyoon;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제10권3호
    • /
    • pp.142-151
    • /
    • 2002
  • The present study was attempted to investigate the effect of apamin on catecholamine (CA) secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of apamin (1 nM) into an adrenal vein for 20 min produced greatly potentiation in CA secretion evoked by ACh (5.32 $ imes$ $10^{-3}$ M), high $K^+$, (5.6 $ imes$ $10^{-2}$), DMPP ($10^{-4}$ M for 2 min), McN-A-343 ($10^{-4}$ M for 2 min), cyclopiazonic acid ($10^{-5}$ M for 4 min) and Bay-K-8644 ($10^{-5}$ M for 4 min). However, apamin itself did fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded with apamin (1 nM) under the presence of glibenclamide ($10^{-6}$ M), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretion evoked by DMPP and McN-A-343 was not affected. However, the perfusion of high concentration of apamin (100 nM) into an adrenal vein for 20 min rather inhibited significantly CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644. Taken together, these results suggest that the low concentration of apamin causes greatly the enhancement of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. These findings suggests that apamin-sensitive SK ($Ca^{2+}$) channels located in rat adrenal medullary chromaffin cells may play an inhibitory role in the release of catecholamines mediated by stimulation of cholinergic nicotinic and muscarinic receptors as well as membrane depolarization. However, it is thought that high concentration of apamin cause the inhibitory responses in catecholamine secretion evoked by stimulation of cholinergic receptors as well as by membrane depolarization from the rat adrenal gland without relevance with the SK channel blockade.

이진탕 분획엑스가 synaptosomal NaK ATPase와 Ca ATPase의 활성도에 미치는 영향 (Effects of Ijingtang fractions on activities of NaK ATPase and Ca ATPase in rat brain synaptosome)

  • 조영욱;한승호;김창주;민병일;이태희;윤상협;오수명
    • 대한한의학회지
    • /
    • 제18권1호
    • /
    • pp.198-207
    • /
    • 1997
  • To explore the action mechanism of Ijintang in the brain, the authors investigated the effects of Ijintang fractions on MgNaK ATPase and MgCa ATPase in rat brain synaptosomes prepared from cerebral cortex. The activities of MgNaK ATPase and MgCa ATPase were assayed by the level of inorganic phosphate liberated from the hydrolysis of ATP. Fraction WH-95-7 at the concentration of $10^{-2}%$ decreased the activity of MgNaK ATPase about 34.1% and also reduced the activity of MgCa ATPase about 49.3% But, other fractions (WB-95-7, WC-95-7, MB-95-7, MC-95-7, MH-95-7) did not significantly changed the activities of the MgNaK ATPase and MgCa ATPase The decreased activity of MgNaK ATPase by WH-95-7 will decrease the rate of $Ca^{2+}$ efflux, probably via an Na-Ca exchange mechanism and will increase the rate of $Ca^{2+}$ entry by the depolarization of nerve terminals. The reduced activity of MgCa ATPase by WH-95-7 will result in the decreased efflux of $Ca^{2+}$. As a conclusion, it can be speculated that lithium elevates the intrasynaptosomal $Ca^{2+}$ concentration via inhibition of the activities of MgNaK ATPase and MgCa ATPase. and this increased $[Ca^{2+}]i$ will cause the release of neurotransmitters.

  • PDF