• Title/Summary/Keyword: ASTM 659E

Search Result 73, Processing Time 0.027 seconds

The Measurement of Combustible Properties of Cyclopentanol (사이클로펜탄올의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • For the safe handling of cyclopentanol, this study was investigated the explosion limits of cyclopentanol in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of cyclopentanol by using closed-cup cyclopentanol was experimented at $49^{\circ}C$. The lower flash points of cyclopentanol by using open cup tester was experimented at $59^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for cyclopentanol. The experimental AIT of cyclopentanol was at $363 ^{\circ}C$.

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

The Measurement and Investigation of Fire and Explosion Characteristics of Cyclohexanone (사이클로헥사논의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • For the safe handling of cyclohexanone, the explosion limits at $25^{\circ}C$ were investigated. The lower flash points and AITs (auto-ignition temperatures) by ignition time delay for cyclohexanone were experimented. By using the literatures data, the lower and upper explosion limits of cyclohexanone recommended 1.1 Vol.% ($100^{\circ}C$) and 9.4 Vol.%, respectively. The lower flash points of cyclohexanone were experimented $42{\sim}43^{\circ}C$ by using closed-cup tester and $49{\sim}51^{\circ}C$ by using open cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for cyclohexanone and the experimental AIT of cyclohexanone was $415^{\circ}C$.

Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture (n-Decane과 sec-Butanol 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-Decane+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Decane and sec-Butanol which constituted binary system were $212^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Decane+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Measurement of Autoignition Temperature of Ethylbenzene+n-hexanol and Ethylbenzene+n-propionic Acid Systems (Ethylbenzene+n-hexanol 계와 ethylbenzene+n-propionic acid계의 최소자연발화온도의 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.33-40
    • /
    • 2007
  • The values of the AITs(Autoignition temperatures) for fire and explosion protection are normally the lowest reported. This study measured the AITs of ethylbenzene+n-hexanol and ethylbenzene+n-propionic acid Systems from ignition delay time(time lag) by using ASTM E659-78 apparatus. The AITs of ethylbenzene, n-hexanol and n-propionic acid which constituted binary systems were $475^{\circ}C,\;275^{\circ}C\;and\;511^{\circ}C$, respectively. The experimental ignition delay time of ethylbenzene+n-hexanol and ethylbenzene+n-propionic acid systems were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole (아니솔의 연소특성치의 측정에 의한 MSDS의 적정성)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.20-24
    • /
    • 2015
  • For the safe handling of anisole, this study was investigated the explosion limits of anisole in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of Anisole by using closed-cup tester were experimented in $39^{\circ}C$ and $42^{\circ}C$. The lower flash points of Anisole by using open cup tester were experimented in $50^{\circ}C$ and $54^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for Anisole. The AIT of Anisole was experimented as $390^{\circ}C$. The lower explosion limit (LEL) by the measured the lower flash point for Anisole were calculated as 1.07 Vol%.

The Measurement of Combustible Properties of Cyclohexanol (사이클로헥산올의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2014
  • For the safe handling of cyclohexanol, this study was investigated the explosion limits of cyclohexanol in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of cyclohexanol by using closed-cup tester were experimented in$60^{\circ}C{\sim}64^{\circ}C$. The lower flash points of cyclohexanol by using open cup tester were experimented in $66^{\circ}C{\sim}68^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for cyclohexanol. The AIT of cyclohexanol was experimented as $297^{\circ}C$. The lower explosion limit (LEL) and the upper explosion limit UEL) by the measured the lower flash point and the upper flash point of cyclohexanol were calculated as 0.95 Vol% and 10.7 Vol%, respectively.

Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene (n-Pentanol과 Ethylbenzene 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.45-51
    • /
    • 2012
  • The MSITs(Minimum Spontaneous Ignition Temperatures) or AITs(Autoignition Temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. This study measured the MSITs(Minimum Spontaneous Ignition Temperatures) of n-pentanol+ethylbenzene system by using ASTM E659 apparatus. The MSITs of pure n-pentanol and ethylbenzene were $285^{\circ}C$ and $475^{\circ}C$, respectively. The experimental MSITs of n-pentanol+ethylbenzene system were a in good agreement with the MSIT calculated by the proposed equations with a few A.A.D.(average absolute deviation).

Measurement and Prediction of Combustion Properties of Styrene (스티렌의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong;Na, Byeong-Gyun
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.70-76
    • /
    • 2013
  • For the safe handling of styrene, this study was investigated the explosion limits of styrene in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. As a results, the lower and upper explosion limits of styrene recommended 0.9 Vol.% and 8.0 Vol.%, respectively. The lower flash points of styrene by using closed-cup tester were experimented $29^{\circ}C{\sim}31^{\circ}C$. The lower flash points of styrene by using open cup tester were experimented $32^{\circ}C{\sim}36^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for styrene. The experimental AIT of styrene was $460^{\circ}C$.

Measurement and Prediction of Autoignition Temperature(AIT) of Flammable Substances - Methanol and Ethanol - (가연성물질의 자연발화온도 측정 및 예측 - 메탄올과 에탄올 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.54-60
    • /
    • 2004
  • Flammable substances are frequently used chemical industry processes. An accurate knowledge of the ALTs(Autoignition Temperatures) is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, ignition delay. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for methanol and ethanol. The A.A.P.E.(Average Absolute Percent Error) and the A.A.D.(Average Absolute Deviation) of the experimental and the calculated delay times by the AITs for methanol were 14.59 and 1.76 respectively. Also the A.A.P.E. and the A.A.D. of the experimental and the calculated delay times by the ATIs for ethanol were 8.33 and 0.88.