

n-Pentanol과 Ethylbenzene 혼합물의 최소자연발화온도의 예측

*하동명

세명대학교 보건안전공학과 (2012년 3월 28일 접수, 2012년 4월 26일 수정, 2012년 4월 26일 채택)

Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene

[†]Dong-Myeong Ha

Dept. of Occupational Health and Safety Engineering., Semyung University, Jecheon 390-711, Korea (Received March 28, 2011; Revised April 26, 2012; Accepted April 26, 2012)

요 약

최소자연발화온도는 가연성혼합물이 화염이나 스파크 없이 주위로부터 충분한 열에너지를 받아서 스스로 발화 하는 최저온도를 말한다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 n-Pentanol+Ethylbenzene 계를 구성하는 순수물질과 혼합물의 최소자연발화온도를 측정하였다. Pentanol과 Ethylbenzene의 측정된 최소자연 발화온도는 각 각 285℃, 475℃ 였다. 그리고 n-Pentanol+Ethylbenzene 계의 예측된 최소자연발화온도는 실험값과 적은 평균절대오차에서 일치하였다.

Abstract - The MSITs(Minimum Spontaneous Ignition Temperatures) or AITs(Autoignition Temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. This study measured the MSITs(Minimum Spontaneous Ignition Temperatures) of n-pentanol+ethylbenzene system by using ASTM E659 apparatus. The MSITs of pure n-pentanol and ethylbenzene were 285°C and 475°C, respectively. The experimental MSITs of n-pentanol+ethylbenzene system were a in good agreement with the MSIT calculated by the proposed equations with a few A.A.D.(average absolute deviation).

Key words : MSIT(Minimum Spontaneous Ignition Temperatures), ignition delay time, ASTM E659, n-pentanol+ethylbenzene system

1. 서 론

최근 새로운 공정과 물질의 개발로 인해 발생될 수 있는 화재 및 폭발을 방호하기 위해 공정에서 취 급하는 가연성물질의 연소특성치인 최소자연발화 온도, 인화점, 폭발한계 등에 관한 연구는 활발히 진 행되고 있다. 자연발화(Autoignition 혹은 Spontaneous Ignition) 는 가연성혼합기체에 열 등의 형태로 에너지가 주어 졌을 때 스스로 타기 시작하는 산화 현상으로, 주위 로부터 충분한 에너지를 받아서 스스로 접화할 수 있는 최저온도를 최소자연발화온도(Minimum Spontaneous Ignition Temperatures(MSIT) or Autoignition Temperatures(AIT))라고 한다. 최소자연발화온 도는 실험 개시온도, 증기 농도, 용기 크기, 산소농 도, 계의 압력, 촉매, 발화지연시간 등 다양한 실험

[†]주저자:hadm@semyung.ac.kr

조건에 영향을 받는다. 따라서 다양한 조건 및 장치 에 의해서 실험이 이루어지므로 문헌들 마다 다른 값들이 제시되고 있다. 최소자연발화온도는 공정 상 에서 발생할 수 있는 화재 및 폭발 위험성에 대해 공정 조업에 있어 과잉 온도, 고온 표면에 연소물질 의 누출, 저장 및 수송에서 과잉 온도 등의 형태에서 공정 상에서 도움을 줄 수 있다[1].

자연발화온도 연구는 대부분 순수물질에 국한되 어 연구되어지고 있으나, 공정에서는 순수물질 보다 혼합물 취급하는 경우가 많다. 그러나 혼합물의 자연 발화온도 연구는 거의 없는 편이다. 이 가운데 혼합물 의 자연발화온도 연구로 Zabetakis 등[2]은 n-Heptane 과 iso-Octane 계의 자연발화온도에 대한 실험적 연 구를 하였으며, Cullis 등[3]은 n-Decane과 2,2,5-Trimethylhexane 계의 자연발화온도를 연구하였다. 최근 Ha 등[4,5]은 o-Xylene과 n-Pentanol 계 그리고 Dichlorosilane와 Trichlorosliane 계의 자연발화온도에 대 해 실험적 연구를 하였다.

지금까지 자연발화온도에 관한 문헌들을 고찰하 면, 동일 물질인데도 불구하고 문헌들에 따라 다른 최소발화온도 값들이 제시되고 있다. 문헌에 제시된 자료들은 과거 표준 장치 및 자체 제작된 장치 등을 사용해서 얻은 결과이 대부분 이다. 따라서 최근에 널리 사용되고 있는 표준 장치를 이용하여 결과를 얻을 필요가 있다.

본 연구에서는 ASTM E659(Standard Test Method for Autoigniton Temperature of Liquid Chemicals) 장치[5]를 사용하여 n-Pentanol과 Ethylbenzene의 혼합물에 대한 자연발화온도를 측정하였다. 이성분 계를 구성하는 순수성분인 n-Pentanol과 Ethylbenzene의 발화온도와 발화지연시간 관계를 측정하였 으며, 측정된 최소자연발화온도를 문헌값과 비교 고 찰하였다. 또한 n-Pentanol과 Ethylbenzene 계에 대 해 최소자연발화온도를 측정하였으며, 혼합조성에 의한 최소발화온도의 예측 모델을 제시하였다. 제시 된 실험자료 및 예측 모델은 이들 물질을 생산, 취급, 처리, 수송 및 저장하는 공정에서 화재 및 폭발을 방 호하는 자료로 제공하고자 한다.

... 열발화 이론에 의한 자연발화온도와 발화 지연시간

열발화 이론은 여러 문헌에 소개 되었을 뿐만 아 니라, 과거 순수물질 연구를 위해 열발화 이론을 전 개한 바 있어 여기서는 간략히 소개한다[5, 6].

일반적으로 열발화 이론은 두 가지로 대별할 수 있다. 하나는 발열과 방열의 관계를 정상상태라고

가정한 Semenov이론이며, 다른 하나는 Semenov이 론을 보강한 것으로 실제 착화는 계의 한 장소에서 온도 상승이 계속되면 이곳에 착화가 일어난다. 이러 한 경우를 고려하여 비교적 간단한 모델을 이용하여 착화를 설명한 Frank-Kamenetskii 이론이다.

본 연구에서는 Frank-Kamenetskii 이론을 도입하 여 발화온도와 발화지연시간의 관계를 나타내고자 한다. 계의 크기 변화와 발화임계 주위 온도 관계로 Frank-Kamenetskii 매개변수로 다음과 같이 사용한다.

$$\delta = \frac{x_0^2 Q \rho A exp(-\frac{E}{RT_a})}{k \frac{RT_a^2}{E}}$$
(1)

여기서 δ는 주위온도에서의 열방출률, 반응물의 차원, r₀는 반응물의 차원, T₀는 주위온도, Q는 연소 열, ρ는 밀도, E는 활성화에너지, k는 열전도도, R는 기체상수이다.

활성화에너지(E)는 식(1)으로부터 얻는 대수온도 곡선 대 1/Ta의 관계를 이용하여 결정할 수 있다. 발화지연은 열 생성(발열화학반응)과 열 손실(액 체연료의 증발)사이의 경쟁 때문에 절연물질 안에 가연성의 증발유체에 대한 특성을 갖는다. 따라서 Frank-Kamenetskii 방법과 비슷하게 발화지연시간 과 초기온도 역수의 배치(Plot)를 이용한다. 일반적 으로 실험에서 측정된 값들을 발화지연시간 Int와 초기온도의 관계로 표현할 수 있다.

$$\ln t \approx a \left(\frac{1000}{TG_0} \right) + b \tag{2}$$

따라서 식 (2)에서 발화지연시간과 초기발화온도 의 관계에서 선형최소자승법 사용하여 매개변수인 a와 b를 결정할 수 있다.

Ⅲ. 자연발화온도 실험

3.1. 실험장치 및 방법(ASTM E659)

본 실험에서는 액체 화학물질의 자연발화점 측정 장치로서 ASTM E659 장치를 사용하여 자연발화온 도를 측정하였으며, 장치는 크게 Furnace, Temperature Controller, Thermocouple, Test Flask, Hypodermic Syringe, Mirror, Air Gun으로 구성되어 있 다[5].

실험 방법은 기준 온도를 설정하고, 실험 장치를 가열하고, 설정온도에 도달하면 플라스크 내부에 주

사기로 시료를 0.1 ml를 넣는다. 그리고 10분 동안 관찰 후 발화가 일어나지 않으면 다시 온도를 설정 한 다음 10분 전까지 발화가 일어나면 설정 온도 보 다 30℃ 낮게 설정하고 2~5℃ 혹은 10℃씩 증가시키 면서 측정하며, 발화가 일어났을 때 시간과 온도를 기록한다.

3.2. 실험재료

본 실험에 사용된 n-Pentanol은 Acros(USA) 그리 고 Ethylbenzene은 Samchun(Korea)사 로서 순도는 각각 99%의 시약을 사용하였으며, 혼합물의 발화온도 측정은 순수물질을 각 각 다른 몰비(Mole Fraction) 로 혼합하여 실험하였다.

Ⅳ. 발화지연시간 및 혼합물의 최소자연발화 온도의 예측 모델

4.1. 다중회귀분석

변수와 응답의 관계를 보다 정량적으로 표시하기 위해서 사용된 방법으로 수학과 통계학적인 방식에 의거해서 종속변수와 독립변수의 관계식을 구하는 방법을 다중회귀(Multiple Regression)이라 하며, 이 방법론은 그 동안 최적조건(Optimum Condition)을 구하는 방식 또는 최적화(Optimization)에 널리 이 용되어 왔다. 변수들에 의한 화재 위험성 평가를 위 한 상관관계를 나타낼 수 있는 추산 모델들 가운데 최적화된 예측 모델을 찾기 위해 다중회귀분석(Multiple Regression Analysis)을 이용하였다[7].

제시한 모델을 다항식의 일반적인 형태로 표시하 면 다음과 같다.

$$Y = a + bx + cx^{2} + dx^{3} + ex^{4} + \dots + px^{p} + \dots$$
(3)

여기서 각 매개변수 *a*, *b*, *c*, *d*, *e*, · · · 을 추 산하기 위해 최소화 방법을 이용하였다. 이 방법은 S.S.D.(Sum of Square of Deviation)을 구하기 위해 각 매개변수를 편미분하여 이를 영(Zero)으로 두어 서 얻어지는 정규식(Normal Equation)의 해를 구하 면 된다.

4.2. 자연발화온도에 의한 발화지연시간 예측 모델

대부분의 가연성 물질에 대해 자연발화온도와 발 화지연시간 사이에서의 관계는 다음과 같은 선형 식 을 사용하여 AIT에 의한 발화지연시간과의 관계를 고찰하였다[4, 8].

$$\log \tau = \left(\frac{A}{T}\right) + B \tag{4}$$

여기서 ~는 발화지연시간, T는 자연발화온도[K], 그리고 A와 B는 상수이다.

본 연구에서는 실험에서 얻은 자연발화온도와 발 화지연시간의 관계를 식 (5)를 사용하여 실험값과 예측값을 비교하였다.

$$\ln \tau = A + \left(\frac{E}{RT}\right) \left(= A + B\left(\frac{1}{T}\right)\right)$$
(5)

식 (4)를 이용하면 활성화에너지(E)도 계산이 가능 하다.

실험에서 얻어진 자료를 회귀분석하여 최적화된 A와 B의 상수를 얻고, 식 (4)와 Semenov[9]가 제시한 식 (6)을 이용하면 활성회에너지(E, Activation Energy) 를 얻을 수 있다.

$$\log \tau = \frac{52.55E}{T} + B \tag{6}$$

여기서 E는 활성화에너지(kJ/mol), B는 상수이다.

4.3 혼합물의 최소자연발화온도 예측 모델

본 연구에서 얻은 측정값을 분석한 결과, Ethylbenzene의 농도 증가에 따라 최소자연발화온도가 증가하는 경향을 보이고 있다. 따라서 조성에 의한 최소자연발화온도 예측 모델을 제시할 수 있다고 판 단되어 다음과 같은 모델을 제시하여 최적화 된 예 측 모델을 찾고자 한다.

$$T_{AIT,MIX} = a + bX_1 \tag{7}$$

$$T_{AIT,MIX} = a + bX_1 + cX_1^2 (\text{or } T_{AIT,MIX} = aX_1 + bX_2 + cX_1X_2)$$
(8)

$$T_{AIT,MIX} = a + bX_1 + cX_1^2 + dX_1^3$$
(9)

4.4. 문헌값과 추산값의 비교 방법

측정값과 예측값의 차이의 정도를 알기 위해서 A.A.D.(Average Absolute Deviation)를 사용하였다 [4].

$$A.A.D. = \Sigma \frac{|\tau_{est.} - \tau_{exp.}|}{N}$$
(10)

- 47 - 한국가스학회지 제16권 제2호 2012년 4월

$$A.A.D. = \Sigma \frac{|AIT_{est.} - AIT_{exp.}|}{N}$$
(11)

여기서 T_{est}는 예측된 발화지연시간, T_{esp}는 실험 에서 얻은 발화지연시간, AIT_{est}는 예측된 자연발화 온도, AIT_{esp}는 실험에서 얻은 자연발화온도, 그리 고 N은 자료수이다.

또한 측정값과 예측값의 통계 분석을 위해 표준 편차, 표본 결정계수를 사용하였다[7].

$$S = \sqrt{\frac{\sum (Y_i - y_i)^2}{n - 1}}$$
(12)

$$r^2 = \frac{SSR}{SST} \tag{13}$$

여기서 S는 결정값의 표준오차, r²는 표본 결정계 수, SSR은 회귀에 의한 제곱합(sum of squares due to regression), SST는 총 제곱합(total sum of squares) 이다.

v. 결과 및 고찰

5.1. 순수물질의 최소자연발화온도 고찰 5.1.1. n-Pentanol의 자연발화온도 고찰

n-Pentanol의 최소자연발화온도를 찾기 위해 자 연발화온도와 발화지연시간의 관계를 실험하여 그 결과를 Table 1에 나타내었다. 그러나 본 실험에서 는 280℃에서는 발화가 일어나지 않았으며, 30℃ 상 승시켜 310℃에서 측정한 결과 33.77sec에서 발화가 되었다. 온도를 1℃~2℃ 계속 낮추어서 측정한 결과 285℃에서 최소자연발화온도를 찾을 수 있었으며, 그 때 발화시간은 187.95sec였다. 발화시작 온도를 기 점으로 온도를 5℃ 혹은 10℃ 상승시켜 발화지연시 간을 측정한 결과 390℃에서 1.50sec에 발화하였다.

n-Pentanol의 최소자연발화점은 모든 문헌이 30 0℃로 제시하고 있으나, 본 실험 결과 285℃에서 발 화하는 것을 알 수 있음에 따라 안전을 위해서는 자 료 제시를 고려해야 할 것으로 본다.

제시한 실험 자료를 Arrhenius 형태인 식 (5)를 이용한 예측식은 다음과 같다.

$$\ln \tau = -25.38 + 16938.5 \left(\frac{1}{T}\right) \tag{14}$$

활성화에너지를 계산하기 위해서 logτ와 (1/T)의 관계로 나타내면 다음과 같다.

 Table 1. Comparion of experimental and calculated ignition delay time by MSIT for n-pentanol

No.	T[k]	$\tau_{exp.}[s]$	$\ln \tau$ _{exp.}	τ pred.(Eqn. 14)
1	558.15	187.95	5.23618	144.27
2	563.15	118.85	4.77786	110.19
3	568.15	106.63	4.66936	84.56
4	573.15	83.00	4.41884	65.20
5	583.15	33.75	3.51898	39.28
6	593.15	16.32	2.79239	24.07
7	603.15	9.41	2.24177	14.99
8	613.15	6.85	1.92425	9.48
9	623.15	5.19	1.64673	6.09
10	633.15	3.90	1.36098	3.96
11	643.15	3.28	1.18784	2.61
12	653.15	2.19	0.78390	1.75
13	663.15	1.50	0.40547	1.18
A.A.D.	-	-	-	8.93

$$\log \tau = -11.02 + 7356.3 \left(\frac{1}{T}\right)$$
 (15)

Semenov가 제시한 식 (6)을 식 (15)에 대입한 결 과 활성화에너지(E)는 약 140.0 kJ/mole이 된다.

Table 1은 실험값과 식 (14)에 의한 예측된 발화 지연시간을 나타내었다. 실험값과 예측값의 평균오 차는 8.93sec, 결정계수(r²)는 0.93로서 예측값과 실 험값의 모사성은 크다고 판단된다.

5.1.2. Ethylbenzene의 자연발화온도 고찰

Ethylbenzene의 최소자연발화온도를 찾기 위해 자연발화온도와 발화지연시간의 관계를 실험하여 그 결과를 Table 2에 나타내었다. 그러나 본 실험에 서는 440℃에서는 발화가 일어나지 않았으며, 30℃ 상승시킨 470℃에서도 발화가 발생되지 않았다. 다 시 10℃ 상승시켜 480℃에서 측정한 결과 10.19sec 에서 발화되었다. 온도를 1℃~2℃ 낮추어 측정한 결 과 475℃, 10.88sec에서 최소자연발화온도를 측정하 였다. 475℃를 기점으로 온도를 5℃ 혹은 10℃ 상승 시켜 발화지연시간을 측정한 결과 540℃, 1.77sec에 서 발화하였다.

제시한 실험자료를 Arrhenius 형태인 식 (5)를 이 용한 예측식은 다음과 같다.

$$\ln\tau = -21.30 + 17692.14 \left(\frac{1}{T}\right) \tag{16}$$

활성화에너지를 계산하기 위해서 logτ와 (1/T)의 관계로 나타내면 다음과 같다.

$$\log \tau = -9.13 + 7683.6 \left(\frac{1}{T}\right) \tag{17}$$

Semenov가 제시한 식 (6)을 식 (17)에 대입한 결 과 활성화에너지(E)는 약 146.2 kJ/mole이 된다.

Table 2은 실험값과 식 (16)에 의한 예측된 발화 지연시간을 나타내었다. 실험값과 예측값의 평균오 차는 0.41sec, 결정계수(r²)는 0.97로서 예측값과 실 험값의 거의 일치하고 있다.

 Table 2. Comparison of experimental and calculated ignition delay time by the MSIT for ethylbenzene

No.	T[K]	τ _{exp.} [s]	$\ln \tau$ _{exp.}	τ est(Eqn.16)
1	748.15	10.88	2.38692	10.43
2	753.15	10.19	2.32140	8.92
3	763.15	5.99	1.79009	6.55
4	773.15	4.48	1.49962	4.86
5	783.15	3.32	1.19996	3.63
6	793.15	2.63	0.96698	2.73
7	803.15	2.07	0.72754	2.07
8	813.15	1.77	0.57097	1.58
A.A.D.	-	-	-	0.41

5.1.3. 순수물질의 자연발화온도 비교

본 연구에서는 n-Pentanol+Ethylbenzene 계를 구 성하는 순수물질에 대하여 최소자연발화온도를 측 정하였으며, 측정된 실험값을 기존 문헌값들과 비교 하여 Table 3에 나타내었다.

n-Pentanol의 경우 NFPA 등 대부분의 문헌에서 300℃제시되고 있으며, Babrauskas와 Scott 문헌에 서는 427℃로서 문헌에 따라 약 130℃의 차이를 보 이고 있다. 그러나 본 연구에서의 측정값은 기존의 문헌값 보다 약 15℃ 낮은 285℃에서 측정되었다. 따라서 본 실험에서 제시한 285℃는 공정 안전을 위 해 새로운 자료로 고려할 수 있다. Ethylbenzene의 경우 문헌에 따라 430℃~477℃로서 약 50℃의 차이 를 보이고 있다. 본 연구에서 측정값은 475℃로서 Jackson과 Scott의 문헌값과 비슷한 결과를 보였다.

5.2. n-Pentanol+Ethylbenzene 혼합물의 최소자연 발화온도 고찰

5.2.1. n-Pentanol(0.1)+Ethylbenzene(0.9) 계의 자연 발화온도

본 실험에서는 Ethylbenzene의 순수물질 자연발 화온도를 고려하여 470℃에서 실험하여 5.87sec에 발화가 됨을 확인하였다. 온도를 50℃내린 420℃에서 실험을 했으나 발화가 일어나지 않았다. 10℃ 상승 시킨 430℃에서는, 10.27sec에 발화가 되었으며, 최 소자연발화온도를 찾기 위해 5℃내린 425℃에서는, 20.81sec에 결과로 발화되었다. 423℃에는 발화가 되 지 않았다. 최소자연발화온도인 425℃를 근거로 하여 5℃ 혹은 10℃씩 상승시켜 발화온도를 측정한 결과, 500℃에서 4.02sec, 520℃에서 2.47sec 그리고 530℃에 서 1.93sec에 발화하였다.

5.2.2. n-Pentanol(0.3)+Ethylbenzene(0.7)계의 자연 발화온도

본 실험에서는 340℃에서는 발화가 일어나지 않았 으며, 350℃, 10.92sec에서 발화가 되었다. 5℃내린 345℃에서 실험을 했으나 발화가 되지 않아 2℃상승 시킨 347℃에서 실험한 결과 11.67sec에 최소자연발화

Table 3. Comparison of MSITs between experimental and several reported data for pure substances

Compound	MSITs(°C)									
	This study	NFPA [10]	SFPE [11]	Sigma [12]	SAX [13]	Babrauskas [1]	Hilado [14]	Jackson [15]	Scott [16]	Zabetakis [2]
n-Pentanol	285	300	300	300	-	427	300	-	427	300
Ethylbenzene	475	432	430	432	432	477	432	460	477	432

한국가스학회지 제16권 제2호 2012년 4월

온도를 찾아냈다. 최소자연발화온도를 기점으로 온 도를 5℃ 혹은 10℃ 상승시켜 발화지연시간을 측정 한 결과 480℃에서 2.48sec, 490℃에서 2.44sec 그리 고 500℃에서 1.99sec에 발화하였다.

5.2.3. n-Pentanol(0.5)+Ethylbenzene(0.5)계의 자연 발화온도

본 실험에서는 310℃에서 발화가 일어나지 않아 서 10℃상승시킨 320℃에 실험을 진행하여 15.82sec 에 발화점을 찾아냈다. 최소자연발화온도를 찾기 위 해 5℃내린 315℃에는 발화가 일어나지 않아 다시 2℃상승시킨 317℃에서 실험한 결과 20.19sec에서 최 소자연발화온도를 찾았다. 최소자연발화온도를 기점 으로 온도를 5℃ 혹은 10℃ 상승시켜 발화지연시간 을 측정한 결과 350℃에서 6.59sec, 390℃에서 3.30sec, 450℃에서 2.53sec, 그리고 460℃에서 1.92sec에 발화 하였다.

5.2.4. n-Pentanol().7)+Ethylbenzene (0.3)계의 자연 발화온도

본 실험에서는 300℃에서 발화가 일어나지 않아서 10℃상승시킨 310℃에 실험을 진행하여 24.13sec에 발 화점을 찾아냈다. 최소자연발화온도를 찾기 위해 5℃ 내린 305℃에 실험한 결과 34.27sec발화가 되어 다시 2℃내린 303℃에 실험하여, 40.55sec에서 최소자연발 화온도를 찾았다. 최소자연발화온도를 기점으로 온 도를 5℃ 혹은 10℃ 상승시켜 발화지연시간을 측정한 결과 370℃에서 3.46sec, 390℃에서 3.09sec 그리고 400℃에서 3.01sec에 발화하였다.

5.2.5. n-Pentanol+Ethylbenzene 계의 최소자연 발화온도의 예측

본 연구에서 얻은 측정값을 분석한 결과 조성 변 화에 따라 최소자연발화온도가 증가하는 경향을 보 이고 있으므로 앞에서 제시한 식 (8)과 (9)를 이용하 여 최적화 된 추산 모델을 제시하였다.

$$T_{AIT,MIX} = 290.5 - 78.2X_1 + 255.6X_1^2 \tag{18}$$

$$T_{AIT,MIX} = 285.1 + 108.3X_1 - 269.3X_1^2 + 352.8X_1^3 \quad (19)$$

n-Pentanol+Ethylbenzene 계에서 각각의 혼합조 성에서 얻은 최소자연발화온도 실험값을 예측식에 의한 예측값과 비교하여 Table 4와 Figure 1에 나타 내었다. 본 연구에서 제시한 식 (14)에 의한 예측값은 실험값의 결정계수값은 0.99로서 거의 일치하고 있 다. 따라서 본 연구에서 제시한 식을 이용하여 다른

Mole f	ractions	MSITs(℃)				
X_1	X_2	Exp.	Eqn.(18)	Eqn.(19)		
0	1	285 290		285		
0.3	0.7	303	290	303		
0.5	0.5	317	315	316		
0.7	0.3	347	361	350		
0.9	0.1	425	427	422		
1	0	475	468	477		
A.A.D.		-	7.23	1.56		

Table 4. The experimental and the predicted MSITs for n-pentanol+ethylbenzene system

Fig. 1. Comparison of MSITs prediction curves with experimental data for n-pentanol (X_1) + ethylbenzene (X_2) system.

조성에서의 최소자연발화온도 예측이 가능해 졌다.

VI. 결 론

본 연구는 최근에 이용되고 있는 자연발화온도 측정 장치(ASTM E659)를 사용하여 2성분계 혼합물 의 자연발화온도를 측정하였다. 이성분계를 구성하 는 순수성분인 n-Pentanol과 Ethylbenzene의 자연 발화온도를 측정하여 문헌값들과 비교 고찰하였다. 또한 n-Pentanol+Ethylbenzene 계에 대해 최소자연

KIGAS Vol. 16, No. 2, April, 2012

발화온도를 측정하였고, 조성 변화에 따라 최소자연 발화온도를 예측하는 모델을 제시하여 다음과 같은 결론을 얻었다.

1) 순수물질의 최소자연발화온도를 측정한 결과 n-Pentanol은 285℃, Ethylbenzene은 475℃ 로 나타 났다. 특히 n-Pentanol의 측정값은 기존의 문헌값들 보다 약 15℃정도 낮게 측정되었으므로 안전을 위해 서는 기존 자료 보다는 본 연구에서 제시한 자료를 사용하는 것이 타당하다.

2) n-Pentanol과 Ethylbenzene의 활성화에너지(E) 는 각각 140 kJ/mol와 146.2 kJ/mol로 계산되었다.

3) n-Pentanol+Ethylbenzene 계에 대해 조성 변화 에 의한 최소자연발화온도를 측정한 결과, n-Pentanol(0.1)+Ethylbenzene(0.9)에서는 425℃, n-Pentanol (0.3)+Ethylbenzene(0.7)에서는 347℃, n-Pentanol (0.5)+Ethylbenzene(0.5)에서는 317℃, n-Pentanol(0.7) +Ethylbenzene(0.3)에서는 303℃으로 측정되었다.

4) n-Pentanol+Ethylbenzene 계의 조성 변화에 의한 최소자연발화온도 예측 모델은 다음과 같다.

 $T_{AIT,MIX} = 285.1 + 108.3X_1 - 269.3X_1^2 + 352.8X_1^3$

참고문헌

- Babrauskas, V., Ignition Handbook, Fire Science Publishers, SFPE, (2003)
- [2] Zabetakis, M.G., A.L. Furno and G.W. Jones, " Minimum Spontaneous Ignition Temperature of Combustibles in Air", Industrial and Engineering Chemistry, 46(10), 2173-2178, (1954)
- [3] Cullis, C.F. and C.D. Foster, "Studies of the Spontaneous Ignition in the Air of Binary Hydrocarbon Mixtures", Combustion and Flame, 23, 347-356, (1974)
- [4] Ha, D.M. and S.J. Lee, "Measurement of Autoignition Temperature of o-Xylene+n-Pentanol System", J. of the Korean Society of Safety, 21(4), 66-72, (2006)

- [5] Ha, D.M., "Characteristics of Auto-ignition for Trichlorosliane and Dichlorosilane-Trichlorosliane Mixtures", J. of the Korean Institute of Gas, 14(4), 24-30, (2010)
- [6] Goldfrab, I. and A. Zinoviev, "A Study of Delay Spontaneous Insulation Fires", Physics Letter, 311, 491-500, (2003)
- [7] Box, G.E.P. and N.R. Draper, Empirical Model-Building and Response Surface, John Wiley and Sons, Inc., (1987)
- [8] Drysdale, D., An Introduction to Fire Dynamics, 2nd ed., Jone Wiley & Sons, (1998)
- [9] Semenov, N.N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, N.J.,(1959)
- [10] NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, NFPA, (1991)
- [11] Kanury, A.M., SFPE Handbook of Fire Protection Engineering ; Ignition of Liquid Fuels, 2nd ed., SFPE, (1995)
- [12] Lenga, R.E. and K.L. Votoupal, The Sigma Aldrich Library of Regulatory and Safety Data, Volume I ~III, Sigma Chemical Company and Aldrich Chemical Company Inc., (1993)
- [13] Lewis, R.J., SAX's Dangerous Properties of Industrial Materials, 11th ed., John Wiley & Son, Inc., N.J., (2004)
- [14] Hilado, C.J. and S.W. Clark, "Autoignition Temperature of Organic Chemicals", Chemical Engineering, 4, 75-80, (1972)
- [15] Jackson, J.L., "Spontaneous Ignition Temperature -Commercial Fluids and Pure Hydrocarbons-", Industrial and Engineering Chemistry, 43(12), 2869-2870, (1951)
- [16] Scott, G.S., G.W. Jones and F.E. Scott, "Determination of Ignition Temperature of Combustible Liquids and Gases", Analytical Chemistry, 20(3), 238-241, (1948)