• Title/Summary/Keyword: ASOS

Search Result 160, Processing Time 0.03 seconds

Temperature and Solar Radiation Prediction Performance of High-resolution KMAPP Model in Agricultural Areas: Clear Sky Case Studies in Cheorwon and Jeonbuk Province (고해상도 규모상세화모델 KMAPP의 농업지역 기온 및 일사량 예측 성능: 맑은 날 철원 및 전북 사례 연구)

  • Shin, Seoleun;Lee, Seung-Jae;Noh, Ilseok;Kim, Soo-Hyun;So, Yun-Young;Lee, Seoyeon;Min, Byung Hoon;Kim, Kyu Rang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.312-326
    • /
    • 2020
  • Generation of weather forecasts at 100 m resolution through a statistical downscaling process was implemented by Korea Meteorological Administration Post- Processing (KMAPP) system. The KMAPP data started to be used in various industries such as hydrologic, agricultural, and renewable energy, sports, etc. Cheorwon area and Jeonbuk area have horizontal planes in a relatively wide range in Korea, where there are many complex mountainous areas. Cheorwon, which has a large number of in-situ and remotely sensed phenological data over large-scale rice paddy cultivation areas, is considered as an appropriate area for verifying KMAPP prediction performance in agricultural areas. In this study, the performance of predicting KMAPP temperature changes according to ecological changes in agricultural areas in Cheorwon was compared and verified using KMA and National Center for AgroMeteorology (NCAM) observations. Also, during the heat wave in Jeonbuk Province, solar radiation forecast was verified using Automated Synoptic Observing System (ASOS) data to review the usefulness of KMAPP forecast data as input data for application models such as livestock heat stress models. Although there is a limit to the need for more cases to be collected and selected, the improvement in post-harvest temperature forecasting performance in agricultural areas over ordinary residential areas has led to indirect guesses of the biophysical and phenological effects on forecasting accuracy. In the case of solar radiation prediction, it is expected that KMAPP data will be used in the application model as detailed regional forecast data, as it tends to be consistent with observed values, although errors are inevitable due to human activity in agricultural land and data unit conversion.

Estimation of grid-type precipitation quantile using satellite based re-analysis precipitation data in Korean peninsula (위성 기반 재분석 강수 자료를 이용한 한반도 격자형 확률강수량 산정)

  • Lee, Jinwook;Jun, Changhyun;Kim, Hyeon-joon;Byun, Jongyun;Baik, Jongjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.447-459
    • /
    • 2022
  • This study estimated the grid-type precipitation quantile for the Korean Peninsula using PERSIANN-CCS-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record), a satellite based re-analysis precipitation data. The period considered is a total of 38 years from 1983 to 2020. The spatial resolution of the data is 0.04° and the temporal resolution is 3 hours. For the probability distribution, the Gumbel distribution which is generally used for frequency analysis was used, and the probability weighted moment method was applied to estimate parameters. The duration ranged from 3 hours to 144 hours, and the return period from 2 years to 500 years was considered. The results were compared and reviewed with the estimated precipitation quantile using precipitation data from the Automated Synoptic Observing System (ASOS) weather station. As a result, the parameter estimates of the Gumbel distribution from the PERSIANN-CCS-CDR showed a similar pattern to the results of the ASOS as the duration increased, and the estimates of precipitation quantiles showed a rather large difference when the duration was short. However, when the duration was 18 h or longer, the difference decreased to less than about 20%. In addition, the difference between results of the South and North Korea was examined, it was confirmed that the location parameters among parameters of the Gumbel distribution was markedly different. As the duration increased, the precipitation quantile in North Korea was relatively smaller than those in South Korea, and it was 84% of that of South Korea for a duration of 3 h, and 70-75% of that of South Korea for a duration of 144 h.

Estimation and assessment of natural drought index using principal component analysis (주성분 분석을 활용한 자연가뭄지수 산정 및 평가)

  • Kim, Seon-Ho;Lee, Moon-Hwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.565-577
    • /
    • 2016
  • The objective of this study is to propose a method for computing the Natural Drought Index (NDI) that does not consider man-made drought facilities. Principal Component Analysis (PCA) was used to estimate the NDI. Three monthly moving cumulative runoff, soil moisture and precipitation were selected as input data of the NDI during 1977~2012. Observed precipitation data was collected from KMA ASOS (Korea Meteorological Association Automatic Synoptic Observation System), while model-driven runoff and soil moisture from Variable Infiltration Capacity Model (VIC Model) were used. Time series analysis, drought characteristic analysis and spatial analysis were used to assess the utilization of NDI and compare with existing SPI, SRI and SSI. The NDI precisely reflected onset and termination of past drought events with mean absolute error of 0.85 in time series analysis. It explained well duration and inter-arrival time with 1.3 and 1.0 respectively in drought characteristic analysis. Also, the NDI reflected regional drought condition well in spatial analysis. The accuracy rank of drought onset, termination, duration and inter-arrival time was calculated by using NDI, SPI, SRI and SSI. The result showed that NDI is more precise than the others. The NDI overcomes the limitation of univariate drought indices and can be useful for drought analysis as representative measure of different types of drought such as meteorological, hydrological and agricultural droughts.

Comparison of Accuracy for GPM IMERG, GSMaP and CMORPH Satellite Precipitation Products over Korea (위성강수 GPM IMERG, GSMaP, CMORPH 정확도 비교)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.208-219
    • /
    • 2020
  • This study aims to determine the applicability of satellite precipitation to the ungauged or inaccessible areas by comparing the accuracy of satellite precipitation. The accuracy assessment showed that the overall spatial distributions of ground-based rainfall and satellite precipitation were similar in all three events. For one-month precipitation with one-hour temporal resolution, the correlations between ground-based precipitation (ASOS) and satellite precipitation were analyzed to be between 0.42 and 0.46. In the evaluation during the period in which precipitation was concentrated, the correlation coefficients for one-hour temporal resolution data were analyzed as 0.55 to 0.66 for IMERG and 0.56 to 0.67 for GSMAP. According to the total rainfall analysis of each rainfall station for the three events, the correlation coefficients of IMERG and GSMaP were relatively better than CMORPH, and the bias of CMORPH data was relatively better than IMERG and GSMaP. However, all the three satellite precipitation were underestimated compared to the ground-based precipitation. In the future, a study will be carried out to estimate precipitation across the Korean Peninsula, including North Korea, reflecting the results from this study.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

A Study on the Effects of Wind Fence on the Dispersion of the Particles Emitted from the Construction Site Using GIS and a CFD Model (GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구)

  • Kim, Dong-Ju;Wang, Jang-Woon;Park, Soo-Jin;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.763-775
    • /
    • 2018
  • In this study, the effects of wind fences on the dispersion of the particles emitted from a constructing site located in the building-congested area in Busan, Korea, using geographic information system (GIS) and a computational fluid dynamics (CFD) model. We averaged the wind speeds observed for 10 years at the Busan automated synoptic observing system (ASOS) and we used the averaged wind speed as the wind speed at the reference height (10 m above the ground level). The numerical simulations were performed for 16 inflow directions, before and after the construction of wind fences with the heights of 5 m and 10 m (total 48 simulations). The detailed flows were analyzed for the northeasterly and south-southwesterly cases which predominantly observed at the Busan ASOS. In the northeasterly case, high concentration appeared at the elementary school next to the construction site due to transport by the airflow coming from the northeast. In the 5-m wind fence case, the wind speeds were slightly weaker and the spread of the fugitive dust was slightly less than those in the no wind fence case. In the 10-m wind fence case, the dust concentration at the elementary school has the maximum reduction of 37%. In the south-southwesterly case, the flow pattern became complicated in the construction site due to the terrain and buildings. Fugitive dust was stagnant at the south side of the construction site but rather spread to the north, increasing the concentration at the elementary school. After the wind fence was built, the concentrations inside the construction site became high as the wind speeds decreased inside, but, the concentrations in the elementary school rather decreased.

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.

Development of Examination Model of Weather Factors on Garlic Yield Using Big Data Analysis (빅데이터 분석을 활용한 마늘 생산에 미치는 날씨 요인에 관한 영향 조사 모형 개발)

  • Kim, Shinkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.480-488
    • /
    • 2018
  • The development of information and communication technology has been carried out actively in the field of agriculture to generate valuable information from large amounts of data and apply big data technology to utilize it. Crops and their varieties are determined by the influence of the natural environment such as temperature, precipitation, and sunshine hours. This paper derives the climatic factors affecting the production of crops using the garlic growth process and daily meteorological variables. A prediction model was also developed for the production of garlic per unit area. A big data analysis technique considering the growth stage of garlic was used. In the exploratory data analysis process, various agricultural production data, such as the production volume, wholesale market load, and growth data were provided from the National Statistical Office, the Rural Development Administration, and Korea Rural Economic Institute. Various meteorological data, such as AWS, ASOS, and special status data, were collected and utilized from the Korea Meteorological Agency. The correlation analysis process was designed by comparing the prediction power of the models and fitness of models derived from the variable selection, candidate model derivation, model diagnosis, and scenario prediction. Numerous weather factor variables were selected as descriptive variables by factor analysis to reduce the dimensions. Using this method, it was possible to effectively control the multicollinearity and low degree of freedom that can occur in regression analysis and improve the fitness and predictive power of regression analysis.

Estimation and assessment of long-term drought outlook information using the long-term forecasting data (장기예보자료를 활용한 장기 가뭄전망정보 산정 및 평가)

  • So, Jae-Min;Oh, Taesuk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.691-701
    • /
    • 2017
  • The objective of this study is to evaluate the long-term drought outlook information based on long-term forecast data for the 2015 drought event. In order to estimate the Standardized Precipitation Index (SPI) for different durations (3-, 6-, 9-, 12-months), we used the observation precipitation of 59 Automated Synoptic Observing System (ASOS) sites, forecast and hindcast data of GloSea5. The Receiver Operating Characteristic (ROC) analysis and statistical analysis (Correlation Coefficient, CC; Root Mean Square Error, RMSE) were used to evaluate the utilization of drought outlook information for the forecast lead-times (1~6months). As a result of ROC analysis, ROC scores of SPI(3), SPI(6), SPI(9) and SPI(12) were estimated to be over 0.70 until the 2-, 3-, 4- and 5-months. The CC and RMSE values of SPI(3), SPI(6), SPI(9) and SPI(12) for forecast lead-time were estimated as (0.60, 0.87), (0.72, 0.95), (0.75, 0.95) and (0.77, 0.89) until the 2-, 4-, 5- and 6-months respectively.

Estimating Spatio-Temporal Distribution of Climate Factors in Andong Dam Basin (안동댐 유역 기상인자의 시공간분포 추정)

  • Lim, Chul Hee;Moon, Joo Yeon;Lim, Yoon Jin;Kim, Sea Jin;Lee, Woo Kyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.57-65
    • /
    • 2015
  • This study investigates characteristics of time series spatial distribution on climate factors in Andong Dam basin by estimating precise spatio-temporal distribution of hydro-meteorological information. A spatio-temporal distribution by estimating Semi-Variogram based on spatial autocorrelation was examined using the data from ASOS and 7 hydro-meteorological observatories in Andong Dam basin of upper Nakdonggang River, which were installed and observed by NIMR(National Institute of Meterological Research). Also, temperature and humidity as climate variables were analyzed and it was recognized that there is a variability in watershed area by time and months. Regardless of season, an equal spatial distribution of temperature at 14 o'clock and humidity at 10 o'clock was identified, and nonequal distribution was noticed for both variables at 18 o'clock. From monthly spatial analysis, the most unequal distribution of temperature was seen in January, and the most equal distribution was detected in September. The most unequal distribution of humidity was identified in May, and the most equal distribution was seen in January. Unlike in forest, seasonal spatial distribution characteristics were less apparent;but temperature and humidity had respective characteristics in hydro-meteorology.