DOI QR코드

DOI QR Code

Estimation and assessment of natural drought index using principal component analysis

주성분 분석을 활용한 자연가뭄지수 산정 및 평가

  • Kim, Seon-Ho (Department of Civil & Environmental Engineering, Sejong University) ;
  • Lee, Moon-Hwan (Department of Civil & Environmental Engineering, Sejong University) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University)
  • 김선호 (세종대학교 건설환경공학과) ;
  • 이문환 (세종대학교 건설환경공학과) ;
  • 배덕효 (세종대학교 건설환경공학과)
  • Received : 2016.02.22
  • Accepted : 2016.04.18
  • Published : 2016.06.30

Abstract

The objective of this study is to propose a method for computing the Natural Drought Index (NDI) that does not consider man-made drought facilities. Principal Component Analysis (PCA) was used to estimate the NDI. Three monthly moving cumulative runoff, soil moisture and precipitation were selected as input data of the NDI during 1977~2012. Observed precipitation data was collected from KMA ASOS (Korea Meteorological Association Automatic Synoptic Observation System), while model-driven runoff and soil moisture from Variable Infiltration Capacity Model (VIC Model) were used. Time series analysis, drought characteristic analysis and spatial analysis were used to assess the utilization of NDI and compare with existing SPI, SRI and SSI. The NDI precisely reflected onset and termination of past drought events with mean absolute error of 0.85 in time series analysis. It explained well duration and inter-arrival time with 1.3 and 1.0 respectively in drought characteristic analysis. Also, the NDI reflected regional drought condition well in spatial analysis. The accuracy rank of drought onset, termination, duration and inter-arrival time was calculated by using NDI, SPI, SRI and SSI. The result showed that NDI is more precise than the others. The NDI overcomes the limitation of univariate drought indices and can be useful for drought analysis as representative measure of different types of drought such as meteorological, hydrological and agricultural droughts.

본 연구에서는 인위적 수공시설물을 고려하지 않는 자연상태의 가뭄해석을 위해 자연가뭄지수(NDI)를 산정하고 활용성을 평가하였다. 자연가뭄지수는 주성분 분석을 이용하여 산정하였으며, 입력자료는 3개월 누적강수량, 자연유량, 토양수분량 자료이다. 강수량은 ASOS 59개 지점 자료이고, 자연유량 및 토양수분량은 지표수문해석모형의 결과를 이용하였다. 가뭄지수의 평가기간은 1977~2012년이며, 활용성 평가를 위해 시계열 분석, 지역별 분석 및 가뭄특성인자 분석을 수행하였다. 시계열 분석결과, 자연가뭄지수는 가뭄의 시작과 끝에 대한 평균절대오차는 0.85로 가장 정확하게 나타났다. 과거 가뭄사례와 가뭄특성인자를 분석한 결과, 자연가뭄지수의 지속기간과 발생간격의 평균절대오차는 각각 1.3, 1.0으로 가뭄의 지속기간 및 발생간격을 적절히 반영하는 것을 확인하였다. 지역별 분석결과, 자연가뭄지수는 단일변량 가뭄지수의 지역별 가뭄상황을 적절히 반영하여 활용성이 높은 것으로 나타났다. 또한, 가뭄의 시작, 끝, 지속기간, 발생간격에 대한 자연가뭄지수, 표준강수지수, 표준유출지수, 표준토양수분지수의 순위를 분석한 결과 자연가뭄지수가 가장 높은 순위로 산정되었다. 자연가뭄지수는 기존 단일변량 가뭄지수의 상이한 가뭄상황을 종합적으로 반영하며, 가뭄의 특성을 정량적으로 제시한다는 점에서 활용성이 높다고 판단된다.

Keywords

References

  1. Abramowitz, M., and Stegun, I.A.E. (1964). Handbook of Mathematical Functions, National Bureau of Standards.
  2. Bae, D.H., Son, K.H., Ahn, J.B., Hong, J.Y., Kim, G.S.,Chung, J.S., Jung, U.S., and Kim, J.H. (2011). "Development of real-time drought monitoring and prediction system on Korea & East Asia region.", Atmosphere. KOMES, Vol. 22, No. 2, pp. 267-277. https://doi.org/10.14191/ATMOS.2012.22.2.267
  3. Bae, D.H., Son, K.H., and Kim, H.E. (2013). "Derivation & evaluation of drought threshold level considering hydro-meteorological data on South Korea." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 3, pp. 287-299. https://doi.org/10.3741/JKWRA.2013.46.3.287
  4. Barnes, S. (1964). "A technique for maximizing details in numerical map analysis", Journal of Applied Meteorology, AMS, Vol. 3, No. 4, pp. 395-409.
  5. Hao, Z., and AghaKouchak, A. (2013). "Multivariate standardized drought Index: A parametric multi-index model", Advances in Water Resources, Vol. 57, pp. 12-18. https://doi.org/10.1016/j.advwatres.2013.03.009
  6. Jeon, C.H. (2012). Data Mining Techniques and Application, Hannarae Publishing Co.
  7. Keyantash, J.A., and Dracup, J.A. (2004). "An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage.", Water Resources Research, AGU, Vol. 40, No. 9, W09304. https://doi.org/10.1029/2003WR002610
  8. Kim, G.S., and Lee, J.W. (2011). "Evaluation of Drought Indices using the Drought Records." Journal of Korea Water Resources Association, KWRA, Vol. 44, No.8, pp. 639-652. https://doi.org/10.3741/JKWRA.2011.44.8.639
  9. Korea Meteorological Administration (2012). Development of Hydro-meteorological Early Warning System for Response to Climate Change, Korea Meteorological Administration.
  10. Kwon, H.J., and Kim, S.J. (2006) "Evaluation of Semi-Distributed Hydrological Drought using SWSI (Surfacte Water Supply Index)" Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 48, No. 2, pp. 37-43. https://doi.org/10.5389/KSAE.2006.48.2.037
  11. Liang, X., Lettenmainer, D.P., Wood, E.F., and Burges, S.J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for General Circulation Models", Journal of Geophysical Research, AGU, Vol. 99, pp.14415-14428. https://doi.org/10.1029/94JD00483
  12. Mckee, T.B., Doesken, N.J., and Kleist, J. (1993). "The Relationship of Drought Frequency and Duration to Time Scales", 8th Conference on Applied Climatology, No. 17-2.
  13. Ministry of Construction & Transportation. (1995). Survey Report of drought history, Ministry of Construction & Transportation.
  14. Ministry of Construction & Transportation. (2002). Survey Report of drought history. Ministry of Construction & Transportation.
  15. National Drought Mitigation Center (NDMC) (2002). Three Years and Counting: What's New with the Drought Monitor, National Drought Mitigation Center.
  16. National Emergency Management Agency (NEMA) (2013). Establishment of National Drought Disaster Information System, National Emergency Management Agency.
  17. Palmer, W.C. (1965) "Meteorologic drought. U.S. Department of Commerce", Weather Bureau, Research Paper, pp. 45-58.
  18. Rajekhar, D., Singh, V.P., and Mishra, A.K., (2015) "Multivariate drought index: An information theory based approach for integrated drought assessment" Journal of Hydrology, Vol. 526, pp. 164-182. https://doi.org/10.1016/j.jhydrol.2014.11.031
  19. Sepulcre-Canto, G., Horion, S., Singleton., A., Carrao, H., and Vogt J. (2012) "Development of a Combined Drought Indicator to detect agricultural drought in Europe" Natural Hazards and Earth System Sciences, EGU, Vol. 12, pp. 3519-3531. https://doi.org/10.5194/nhess-12-3519-2012
  20. Sheffield, J., and Wood, E.F. (2008). "Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle." Journal of Climate, Vol. 21, No. 3, pp. 432-458. https://doi.org/10.1175/2007JCLI1822.1
  21. Shukla, S., and Wood, A. W. (2008). "Use of a standardized runoff index for characterizing hydrologic drought", Journal of Geophysical Research, Vol. 35, No. L2045, doi:10.1029/2007GL032487.
  22. So, J.M., Son, K.H., and Bae, D.H. (2014), "Estimation and Assessment of Bivariate joint Drought Index based on Copula Functions" Journal of Korea Water Resources Association, KWRA, Vol. 47, No. 2, pp. 171-182. https://doi.org/10.3741/JKWRA.2014.47.2.171
  23. Son, K.H., Bae, D.H. and Chung, J.S. (2011). "Drought Analysis and Assessment Using Land Surface Model on South Korea.", Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 8, pp. 667-681. https://doi.org/10.3741/JKWRA.2011.44.8.667
  24. Yevjevich, V. (1967). "An objective approach to definitions and investigations of continental hydrologic droughts", Hydrology Paper, No. 23, Colorado State University, Fort Collins, CO.
  25. Yoo, J.Y., Choi, M.H., and Kim, T.W. (2009) "Regional Characterization Analysis of Drought in Korea using Multivariate Analyses" Journal of Korea Water Resources Association, KWRA, pp. 1462-1466.