• 제목/요약/키워드: AS-PCR

검색결과 6,333건 처리시간 0.05초

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

비타민 E 강화 유전자변형 들깨에 대한 정성 PCR 분석법 (Qualitative PCR Detection of vitamin E-enriched GM Perilla)

  • 김재환;안지혜;송희성;김경환;김동헌;김해영
    • Applied Biological Chemistry
    • /
    • 제49권3호
    • /
    • pp.192-195
    • /
    • 2006
  • 국내에서 개발된 비타민 E 강화 유전자변형 들깨의 정성 PCR 분석법의 개발을 위해 들깨의 내재 유전자로써 KAS-I (Beta-ketoacyl-ACP synthase I)를 선별하였고, 이러한 내재유전자를 특이적으로 증폭시킬 수 있는Primer(Pfru3-F/R)쌍을 이용한 PCR에서 95 bp의 PCR증폭 산물을 얻었으며, 들깨를 포함한 16개 작물에 대해 PCR을 수행한 결과에서 들깨만이 특이적으로 증폭되는 것을 확인하였다. 또한, 비타민 E 강화 유전자변형 들깨에 삽입된 TMT(${\gamma}$-tocopherol methyltransferase) 유전자와 OCS(Octopine synthase) terminator 연결 부위를 증폭시켜 148 bp의 PCR 산물을 얻을 수 있는 primer(TMTO-F/R)를 제작하였으며, 이러한 두 쌍의 primer를 이용하여 국내 개발된 비타민 E 강화 유전자변형 들깨의 PCR 정성 분석법을 확립하였다.

Duplex PCR을 이용한 유제품 안에 있는 산양유와 우유의 신속한 동정에 대한 연구 (Rapid Identification of Cow and Goat Milk in Milk Products Using a Duplex PCR Technique)

  • 이승배;최석호
    • 한국축산식품학회지
    • /
    • 제29권5호
    • /
    • pp.647-652
    • /
    • 2009
  • 유제품에 들어 있는 우유와 산양유를 동정하기 위해 미토콘드리아의 12S rRNA 유전자를 목표로 하는 primer을 이용하는 duplex PCR 분석을 적용하였다. 소와 산양의 특이성 primer을 이용한 duplex PCR 분석은 우유와 산양유 DNA에 대해 각각 233 bp와 326 bp의 특이성 단편을 나타냈다. Duplex PCR 분석이 라벨에 표시된 성분을 확인하기위하여 시중마트에서 구입한 15개 유제품에 적용하였다. Duplex PCR 분석 결과 4개 시유, 3개 요구르트, 1개 전지분유는 표시된 성분과 완전히 일치하였다. 그러나 7개의 조제분유 중 5개만 표시성분과 일치하고 2개 조제분유제품은 산양유와 우유가 각각 오염되어 있는 것으로 나타났다. 제안된 duplex PCR 분석은 산양유에 들어있는 우유를 0.1%까지 측정할 수 있는 민감하고 신속한 방법이다. Duplex PCR 분석은 유제품 속에 들어있는 우유와 산양유를 one-step 방법으로 동시에 탐지할 수 있다.

PCR에 의한 식품으로부터 Listeria monocytogenes의 특이적 검출 (Specific Detection of Listeria monocytogenes in Foods by a Polymerase Chain Reaction)

  • 신순영;구영조;김왕준
    • 한국식품과학회지
    • /
    • 제31권6호
    • /
    • pp.1628-1634
    • /
    • 1999
  • Listeria monocytogenes의 식품 속에서 신속하고 특이적인 검출을 위하여, listeriolysin O gene에 의한 primer, LM 1과 LM 2를 선택하여 PCR을 수행하였다. L. monocytogenes의 DNA 추출이나 cell lysis 없이 intact whole cell을 직접 이용하여 PCR을 하였으며 $10^{2-6}$ CFU 수준의 균체 배양액으로부터 L. monocytogenes에 특이적인 702 bp의 PCR 증폭 산물을 확인하였다. 우유, 닭고기, 김치 등의 식품에 L. monocytogenes를 접종하여 증균배양 전후 균의 PCR에 대한 감도와 생균수를 비교한 결과, 실험된 식품 속에서의 L. monocytogenes의 검출 감도는 순수 배양액에서의 경우에 비해 약 1/10로 둔화되었으나 역시 특이적인 검출이 가능하였다. Primer LM 1과 2를 이용한 본 실험조건에서의 L. monocytogenes의 PCR에 의한 검출은 약 4시간으로 확인이 가능하였으며, 기존의 배양 방법에 비해, 특이성이나 검출 속도 면에서 식품위생 실무에 적용하기 위한 높은 잠재력을 보여 주었다.

  • PDF

Development of a Monitoring System for Water-borne Bacteria by a Molecular Technique, PCR-RFLP-sequence Analysis

  • Lee, Ji-Young;Jeong, Eun-Young;Lee, Kyu-sang;Seul-Ju;Kim, Jong-Bae;Kang, Joon-Wun;Lee, Hye-Young
    • 대한의생명과학회지
    • /
    • 제9권3호
    • /
    • pp.139-144
    • /
    • 2003
  • Since water borne infection causes acute diseases and results in spread of diseases by secondary infection, the prevention is very important. Therefore, it is necessary to have a method that is rapid and effective to monitor pathogenic bacteria in drinking water. In this study, we employed a systematic method, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis, to develop an effective monitoring system for possible bacterial contaminants in drinking water. For this purpose, PCR primers were derived from 992 bp region of the 16s rRNA gene that is highly conserved through the different species of prokaryotes. To test whether the PCR primers designed are indeed useful for detecting all the possible microbial contaminants in the water, the primers were used to amplify 16s rRNA regions of different microbial water-borne pathogens such as E. coli, Salmonella, Yersinia, Listeria, and Staphylococcus. As expected, all of tested microorganisms amplified expected size of PCR products indicating designed PCR primers for 16s rRNA indeed can be useful to amplify all different microbial water-borne pathogens in the water. Furthermore, to test whether these 16s rRNA based PCR primers can detect bacterial populations present in the water, water samples taken from diverse sources, such as river, tap, and sewage, were used for amplification. PCR products were for then subjected for cloning into a T-vector to generate a library containing 16s rRNA sequences from various bacteria. With cloned PCR products, RFLP analysis was done using PCR products digested with restriction enzyme such as Hae III to obtain species-specific RFLP profiles. After PCR-RFLP, the bacterial clones which showed the same RFLP profiles were regarded as the same ones, and the clones which showed distinctive RFLP profiles were subsequently subjected for sequence analysis for species identification. By this PCR-RFLP analysis, we were able to reveal diverse populations of bacteria living in water. In brief, in unsterilized natural river water, over 60 different species of bacteria were found. On the other hand, no PCR products were detected in drinking tap-water. The results from this study clearly indicate that the PCR-RFLP-sequence analysis can be a useful method for monitoring diverse, perhaps pathogenic bacteria contaminated in water in a rapid fashion.

  • PDF

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • 주민영;백승훈;김은주;;박찬영;박태정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

DNA Microarray Probe Preparation by Gel Isolation Nested PCR

  • Wang, Hong-Min;Ma, Wen-li;Huang, Hai;Xiao, Wei-Wei;Wang, Yan;Zheng, Wen-Ling
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.356-361
    • /
    • 2004
  • To develop a simplified method that can rapidly prepare DNA microarray probes in a massive scale, a lambda phage genomic DNA-fragments library was constructed for the microarray-probes collection. Four methods of DNA band recovery from the first PCR products were tested and compared. The DNA microarray probes were collected by a novel method of nested PCR that was mediated by gel isolation of the first PCR products. This method was named GIN-PCR. The probes that were prepared by this GIN-PCR technique were used as subjects to fabricate a DNA microarray. The results showed that a wooden toothpick was superior to the other 3 methods, since this technique can steadily transfer the DNA bands as the template of the second PCR after the first PCR. A group of probes were successfully collected and DNA microarrays were constructed using these probes. Hybridization results demonstrated that this technique of DNA recovery and probe preparation was rapid, efficient, and effective. We developed a cost-effective and less labor-intensive method for DNA microarray probe preparation by nested PCR that is mediated by wooden toothpick transfer of the DNA bands in the gel after electrophoresis.

Development of Quantitative Real-Time PCR Primers for Detection of Prevotella intermedia

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.205-210
    • /
    • 2015
  • Prevotella intermedia-specific quantitative real-time PCR (qPCR) primers were previously designed based on the nucleotide sequences of RNA polymerase ${\beta}$-subunit gene (rpoB). However, the several clinical strains isolated from Korean populations are not detectable by the qPCR primers. The purpose of this study was to develop new P. intermedia-specific qPCR primers based on the rpoB. The specificity of the primers was determined by conventional PCR with 12 strains of P. intermedia and 52 strains (52 species) of non-P. intermedia bacteria. The sensitivity of primers was determined by qPCR with serial dilutions of the purified genomic DNAs (40 ng to 4 fg) of P. intermedia ATCC $25611^T$. The data indicated that only P. intermedia strains were detected by the P intermedia-specific qPCR primers (RTPiF2/RTPiR2); in addition, as little as 40 fg of P. intermedia genomic DNA could be detected. These results suggest that these qPCR primers are useful in detecting P. intermedia from the bacterial infectious lesions including dental plaque and oral tissue lesions.

A Multiplex PCR Assay for the Detection of Food-borne Pathogens in Meat Products

  • Kim, Hyoun-Wook;Kim, Ji-Hyun;Rhim, Seong-Ryul;Lee, Kyung-A;Kim, Cheon-Jei;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권4호
    • /
    • pp.590-596
    • /
    • 2010
  • Meat and meat products are a potential source of food-borne pathogens, including Staphylococcus aureus, Salmonella spp., Escherichia coli O157:H7, and Bacillus cereus. A sensitive and specific PCR assay for the detection of these pathogens in meat and meat products was developed in this study, as part of a broader effort to reduce the potential health hazards posed by these pathogens. Initially, PCR conditions were standardized with purified DNA. Under standard conditions, the detection level for PCR was as low as 10 pg of purified bacterial DNA. After overnight growth of bacteria in a broth medium, as few as $10^2$ CFU of bacteria were detected by PCR assay. The primers employed in the PCR assay were found to be highly specific for individual organisms, and evidenced no cross-reactivity with heterologous organisms. Additionally, the multiplex PCR assays also amplified some target genes from the four pathogens, and multiplex amplification was obtained from as little as 10 pg of DNA, thus illustrating the excellent specificity and high sensitivity of the assay. In conclusion, this PCR-based technique provides a sensitive and specific method for the detection of S. aureus, Salmonella spp., E. coli O157:H7, and B. cereus in meat and meat products.

갯벌 퇴적물내 병원성 Vibrio vulnificus의 신속하고 특이적인 검출 (Rapid and Specific Detection of Virulent V. vulnificus in Tidal Flat Sediments)

  • 변기득;이정현;이계준;김상진
    • 미생물학회지
    • /
    • 제41권3호
    • /
    • pp.168-176
    • /
    • 2005
  • 갯벌 퇴적물에 존재하는 병원성 해양미생물인 Vibrio vulnificus를 신속하고 정확하게 검출하기 위해 PCR, Southern hybridization 방법과 real-time PCR을 수행하여 검출 민감도를 비교하였다. 갯벌 퇴적물로부터 bead beater를 이용한 물리적 방법으로 DNA 조추출액을 얻고 상용화된 키트 (Geneclean turbo Kit)를 이용하여 부식물질(humic substances)을 제거하였다. 병원성에 관련된 3 종의 유전자(hemolysin, vvhA; phosphomannomutase, pmm; metalloprotease, vvpE)를 대상으로 설계한 프라이머 셋을 동시에 사용하는 multiplex PCR 방법과 Southern hybridization과 병행한 방법(PCR/Southern hybridization)을 수행하였다. Real-time PCR은 hemolysin 유전자(vvhA)에 특이한 프라이머와 TaqMan 탐침을 사용하였다. 전처리하지 않은 갯벌 퇴적물의 경우, PCR/Sourthern hybridization과 real-time PCR 방법의 검출 민감도는 퇴적물 1 g 당 약 $10^2$ 개의 세포 수준이었다. 농후처리액(APW; alkaline peptone water)으로 $35^{\circ}C$에서 $2{\~}3$시간, 8시간 중균 배양할 경우 갯벌 퇴적물 1 g 당 $2{\~}10$개 세포가 존재할 때 PCR/Southern hybridization 방법과 real-time PCR 방법으로 각각 검출할 수 있었다. 전처리 과정을 포함하여 real-time PCR은 $6{\~}7$시간, PCR/Sourthern hybridization은 약 36시간이 소요되었다.