• Title/Summary/Keyword: ART2 Neural Network

Search Result 136, Processing Time 0.023 seconds

A Model of Recursive Hierarchical Nested Triangle for Convergence from Lower-layer Sibling Practices (하위 훈련 성과 융합을 위한 순환적 계층 재귀 모델)

  • Moon, Hyo-Jung
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.415-423
    • /
    • 2018
  • In recent years, Computer-based learning, such as machine learning and deep learning in the computer field, is attracting attention. They start learning from the lowest level and propagate the result to the highest level to calculate the final result. Research literature has shown that systematic learning and growth can yield good results. However, systematic models based on systematic models are hard to find, compared to various and extensive research attempts. To this end, this paper proposes the first TNT(Transitive Nested Triangle)model, which is a growth and fusion model that can be used in various aspects. This model can be said to be a recursive model in which each function formed through geometric forms an organic hierarchical relationship, and the result is used again as they grow and converge to the top. That is, it is an analytical method called 'Horizontal Sibling Merges and Upward Convergence'. This model is applicable to various aspects. In this study, we focus on explaining the TNT model.

Sea Ice Type Classification with Optical Remote Sensing Data (광학영상에서의 해빙종류 분류 연구)

  • Chi, Junhwa;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1239-1249
    • /
    • 2018
  • Optical remote sensing sensors provide visually more familiar images than radar images. However, it is difficult to discriminate sea ice types in optical images using spectral information based machine learning algorithms. This study addresses two topics. First, we propose a semantic segmentation which is a part of the state-of-the-art deep learning algorithms to identify ice types by learning hierarchical and spatial features of sea ice. Second, we propose a new approach by combining of semi-supervised and active learning to obtain accurate and meaningful labels from unlabeled or unseen images to improve the performance of supervised classification for multiple images. Therefore, we successfully added new labels from unlabeled data to automatically update the semantic segmentation model. This should be noted that an operational system to generate ice type products from optical remote sensing data may be possible in the near future.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Comparative Study of Machine learning Techniques for Spammer Detection in Social Bookmarking Systems (소셜 복마킹 시스템의 스패머 탐지를 위한 기계학습 기술의 성능 비교)

  • Kim, Chan-Ju;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.345-349
    • /
    • 2009
  • Social bookmarking systems are a typical web 2.0 service based on folksonomy, providing the platform for storing and sharing bookmarking information. Spammers in social bookmarking systems denote the users who abuse the system for their own interests in an improper way. They can make the entire resources in social bookmarking systems useless by posting lots of wrong information. Hence, it is important to detect spammers as early as possible and protect social bookmarking systems from their attack. In this paper, we applied a diverse set of machine learning approaches, i.e., decision tables, decision trees (ID3), $na{\ddot{i}}ve$ Bayes classifiers, TAN (tree-augment $na{\ddot{i}}ve$ Bayes) classifiers, and artificial neural networks to this task. In our experiments, $na{\ddot{i}}ve$ Bayes classifiers performed significantly better than other methods with respect to the AUC (area under the ROC curve) score as veil as the model building time. Plausible explanations for this result are as follows. First, $na{\ddot{i}}ve$> Bayes classifiers art known to usually perform better than decision trees in terms of the AUC score. Second, the spammer detection problem in our experiments is likely to be linearly separable.

Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis (치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발)

  • Son, Joo Hyung;Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Color Analyses on Digital Photos Using Machine Learning and KSCA - Focusing on Korean Natural Daytime/nighttime Scenery - (머신러닝과 KSCA를 활용한 디지털 사진의 색 분석 -한국 자연 풍경 낮과 밤 사진을 중심으로-)

  • Gwon, Huieun;KOO, Ja Joon
    • Trans-
    • /
    • v.12
    • /
    • pp.51-79
    • /
    • 2022
  • This study investigates the methods for deriving colors which can serve as a reference to users such as designers and or contents creators who search for online images from the web portal sites using specific words for color planning and more. Two experiments were conducted in order to accomplish this. Digital scenery photos within the geographic scope of Korea were downloaded from web portal sites, and those photos were studied to find out what colors were used to describe daytime and nighttime. Machine learning was used as the study methodology to classify colors in daytime and nighttime, and KSCA was used to derive the color frequency of daytime and nighttime photos and to compare and analyze the two results. The results of classifying the colors of daytime and nighttime photos using machine learning show that, when classifying the colors by 51~100%, the area of daytime colors was approximately 2.45 times greater than that of nighttime colors. The colors of the daytime class were distributed by brightness with white as its center, while that of the nighttime class was distributed with black as its center. Colors that accounted for over 70% of the daytime class were 647, those over 70% of the nighttime class were 252, and the rest (31-69%) were 101. The number of colors in the middle area was low, while other colors were classified relatively clearly into day and night. The resulting color distributions in the daytime and nighttime classes were able to provide the borderline color values of the two classes that are classified by brightness. As a result of analyzing the frequency of digital photos using KSCA, colors around yellow were expressed in generally bright daytime photos, while colors around blue value were expressed in dark night photos. For frequency of daytime photos, colors on the upper 40% had low chroma, almost being achromatic. Also, colors that are close to white and black showed the highest frequency, indicating a large difference in brightness. Meanwhile, for colors with frequency from top 5 to 10, yellow green was expressed darkly, and navy blue was expressed brightly, partially composing a complex harmony. When examining the color band, various colors, brightness, and chroma including light blue, achromatic colors, and warm colors were shown, failing to compose a generally harmonious arrangement of colors. For the frequency of nighttime photos, colors in approximately the upper 50% are dark colors with a brightness value of 2 (Munsell signal). In comparison, the brightness of middle frequency (50-80%) is relatively higher (brightness values of 3-4), and the brightness difference of various colors was large in the lower 20%. Colors that are not cool colors could be found intermittently in the lower 8% of frequency. When examining the color band, there was a general harmonious arrangement of colors centered on navy blue. As the results of conducting the experiment using two methods in this study, machine learning could classify colors into two or more classes, and could evaluate how close an image was with certain colors to a certain class. This method cannot be used if an image cannot be classified into a certain class. The result of such color distribution would serve as a reference when determining how close a certain color is to one of the two classes when the color is used as a dominant color in the base or background color of a certain design. Also, when dividing the analyzed images into several classes, even colors that have not been used in the analyzed image can be determined to find out how close they are to a certain class according to the color distribution properties of each class. Nevertheless, the results cannot be used to find out whether a specific color was used in the class and by how much it was used. To investigate such an issue, frequency analysis was conducted using KSCA. The color frequency could be measured within the range of images used in the experiment. The resulting values of color distribution and frequency from this study would serve as references for color planning of digital design regarding natural scenery in the geographic scope of Korea. Also, the two experiments are meaningful attempts for searching the methods for deriving colors that can be a useful reference among numerous images for content creator users of the relevant field.