• Title/Summary/Keyword: ARMS

Search Result 1,407, Processing Time 0.028 seconds

Performance Evaluation for Noise Suppression of a Silencer in Small Arms (소형 화기용 소음기의 소음 저감 성능 평가)

  • 박문선;구태완;강범수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.151-158
    • /
    • 2003
  • The impulse noise of bullet after shooting in small arms has an effect on the hearing ability of human. Although a silencer has been developed for noise reduction in small arms, there is only a few researches about relationships between the sound pressure level and the auditory sense of human. In this study, the quantitative sound pressure levels are revealed by experimental measurements of impulse noise with each silencer type. And the performance evaluation for noise suppression of a silencer in small arms is carried out to reduce a serious loss of the hearing ability of the small arms user. It is concluded that the evaluated results can be utilized for checking sound pressure and data accumulation for new small arms design with silencer.

Design, Implementation, and Control of Two Arms of a Service Robot for Floor Tasks (바닥작업이 가능한 양팔 서비스 로봇의 기구학 설계, 제작 및 제어)

  • Bae, Yeong Geol;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • This paper presents the implementation and control of two arms of an indoor service robot for floor tasks. The robot arms are designed to have 6 degrees-of-freedom (DOF), but actually built to have 5 DOF. Forward and inverse kinematics of two arms are analyzed and simulated to confirm the kinematic analysis. Two arms are actually controlled based on the inverse kinematics. The right and left arms are separately controlled to follow different trajectories in order to make sure the functionality of both arms. Experimental studies are conducted to confirm the kinematic analysis and proper operation of two arms.

A Experimental Comparison Analysis for the Characteristics of Impulse Noise Caused by Shooting of Small Arms (소구경 화기의 사격음 특성에 대한 비교분석 연구)

  • Park, Mi-You;Shim, Cheul-Bo;Hong, JunSeok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.578-583
    • /
    • 2016
  • In order to provide a basis data for design of small arms and their silencer, an experimental study on firing noise of small arms was performed around the muzzle of a gun. For this experimental comparison analysis, the target small arms were included most operating small arms in our country. The sound pressure levels were measured at a certain distance which was predetermined according to US army firing test procedure, TOP 3-2-045. By this experimental study, the sound pressure levels of 5.56 mm caliber small arms are 143 dB ~ 145.4 dB and 7.62 mm caliber small arms are 144 dB ~ 145.2 dB. Between the heavy machine gun K12 and M60, the sound pressure level of K12 is slightly lower than M60.Also silencer for K14 snifer rifle was tested. Using this result, it has been found that the reduction effect of the silencer is 15.4 dB but the improvements of silencer performance in the high frequency range have to be studied later on.

Intelligent Distance Controller for Humanoid Robot Arms Handling a Common Object (휴머노이드 로롯팔의 물체 조작을 위한 지능형 거리 제어기)

  • Bhogadi, Dileep K.;Cho, Hyun-Chan;Kim, Kwang-Sun;Wilson, Sara
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.71-74
    • /
    • 2008
  • The main object of this paper is concentrated on distance control of two robot arms of a humanoid using Fuzzy Logic Controller (FLC) for handling a common object. Serial Link Robot arms are widely used in most significantly in Humanoids serving for older people and also in various industrial applications. A method is proposed here that separates the interconnections between two robot arms so that the resulting model of two arms is decomposed into fuzzy logic based controller. The distance between two end effectors is always kept equal to that of the diameter of an object to be handled, so that the object would not fall down. Mathematical model of this system was obtained to simulate the behavior of serial robotic arms in close loop control before using fuzzy logic controller. Lagrangian equation of motion has been used to obtain the appropriate mathematical model of Robotic arms. The results are shown to provide some improvement over those obtained by more conventional means.

  • PDF

The Current State and Future Directions of Industrial Robotic Arms in Modular Construction

  • Song, Seung Ho;Choi, Jin Ouk;Lee, Seungtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.336-343
    • /
    • 2022
  • Industrial robotic arms are widely adopted in numerous industries for manufacturing automation under factory settings, which eliminates the limitations of manual labor and provides significant productivity and quality benefits. The U.S. modular construction industry, despite having similar controlled factory environments, still heavily relies on manual labor. Thus, this study investigates the U.S., Canada, and Europe-based leading modular construction companies and research labs implementing industrial robotic arms for manufacturing automation. The investigation mainly considered the current research scope, industry state, and constraints, as well as identifying the types and specifications of the robotic arms in use. First, the study investigated well-recognized modular building associations, the Modular Building Institute (MBI), and renowned architecture design magazine, Dezeen to gather industry updates. The authors discovered one university lab and a few companies that adopted Switzerland-based robotic arms, ABB. Researching ABB robotics led to the discovery of ABB's competitor, Germany-based KUKA robotic arms. Consequently, research extended to the companies and labs adopting KUKA models. In total, this study has identified seven modular companies and four research labs. All companies employed robotic arms and gantry robot combinations in a production-line-like system for partial automation, and some adopted design standardization for optimization. The common goal among the labs was to achieve greater flexibility and full automation with robotic arms. This study will help companies better implement robotic arm automation by providing recommendations from investigating its current industry status.

  • PDF

Difference in Muscle Activities According to Stability on Support Surface During Plank Exercise

  • Cho, Yong-Ho;Choi, Jin-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.73-77
    • /
    • 2017
  • PURPOSE: The present study aimed to measure muscle activities in the pectoralis major, the erector spinae, and the quadriceps femoris according to support surface states of arms and legs during plank exercise. METHODS: The subjects of this study were 21 healthy males in their 20s and their muscle activities at three states were measured as follows: The first state was where the support surface of arms and legs was stable. The second state was where only arms were unstable, and the third state was where only legs were unstable. Electromyography (EMG) was used to measure muscle activities. Pectoralis major, quadriceps femoris, and elector spinae were measured for muscle activities. RESULTS: The muscle activities in the pectoralis major were statistically high when arms were unstable. The muscle activities in the quadriceps femoris were statistically high when legs were unstable. The muscle activities in the erector spinae were higher when arms and legs were unstable compared to that at the stable support surface. No significant difference was revealed statistically when arms and legs were unstable. CONCLUSION: If the instability of arms and legs is employed during plank exercise, exercise on the upper and lower bodies or the erector spinae is expected to be more effective.

A Statistical Modeling for the Economic Interpretation of Centrality in the International Arms Export (세계 무기 수출 중심성에 관한 통계적 분석과 경제적 의미)

  • Park, Joonsoo;Kim, Sung-Chul
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.177-202
    • /
    • 2020
  • We propose the statistical modeling and empirical results that can be utilized to identify and interpret the structural factors of international arms exports in recent years. The building blocks of research comprise the following questions; which would be the explanatory variables for the changing trend of international arms exports, whether the statistical significance can be verified on those variables and how those are interpreted for the future policy making purpose. We use the dataset of top 40 countries from SIPRI's Arms Transfers Database and analyze several regression models which consist of explanatory variables derived from research hypotheses. The most noticeable result is that the national fiscal reserve is shown to have consistent influence on the arms exports changes. UN security council members' group also has dominant power to make a formation of arms exports market block. Furthermore, gross domestic product and net exports volume in the national economy would seem to be related to changes of international arms exports in post-2000 period as well.

Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision (스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험)

  • Lee, Woon-Kyu;Kim, Dong-Min;Choi, Ho-Jin;Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

Development of high precision multi arms robot system consist of two robot arms and multi sensors (복수개의 로보트와 다중센서를 이용한 정밀조립용 로보트 시스템 개발에 관한 연구)

  • Lim, Mee-Seub;Cho, Young-Jo;Lee, Joon-Soo;Park, Jeung-Min;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.422-424
    • /
    • 1992
  • In this paper, we are designed a hierachical system controller and builed a robot system for high precision assembly consisting in multi-arms and multi-sensor. For the control of a multi-arms robot system, the robot system are consisted of cell controller, station controller and device. The Operating System of a cell controller is VxWorks for real-time multi-processing. Using by C-language, we are proposed a multi-arms robot control language based a RCCL, and this control language is partially implemented and tested in multi-robot control system.

  • PDF

A compliant control method for cooperating two arms with asymetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 컴플라이언스 제어방법)

  • 여희주;서일홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.40-50
    • /
    • 1996
  • An unified compliant control algorithm to regulate the force by dual arms is proposed, where tow arms are treated as one arm in a kinematic viewpoint. The force error calculated form the information of two force/torque sensors attached to the end of each arm is transferred to minimum actuator coordinates, and then is distributed to total system actuator coordinates. The position adjustment at the total actuator coordinates is computed based on the effective computed based on the effective compliance matrix with respect to total actuator coordinates, which is obtained by coordinate transformation between the task coordinates and the total actuator coordinates. An experiment is carried out for dual arms with asymmetric kinematic structure to control an interaction force between manipulators and the environment. The performances of the proposed control algorithm are experimentally compared to those of dual arms employing master/slave scheme. The proposed compliant control algorithm not only ouperforms other algorithms, but also can be treated as an unified approach n the sense that it can be applied to arbitrary dual arm systems with general kinematic structures.

  • PDF