• Title/Summary/Keyword: ARMA

Search Result 319, Processing Time 0.028 seconds

A study on the adaptive predictive control of steam-reforming plant using bilinear model (쌍일차 모델을 이용한 스팀개질 플랜트의 적응예측제어에 관한 연구)

  • 오세천;여영구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.156-159
    • /
    • 1996
  • An adaptive predictive control for steam-reforming plant which consist of a steam-gas reformer and a waste heat steam-boiler was studied by using MIMO bilinear model. The simulation experiments of the process identification were performed by using linear and bilinear models. From the simulation results it was found that the bilinear model represented the dynamic behavior of a steam-reforming plant very well. ARMA model was used in the process identification and the adaptive predictive control. To verify the performance and effectiveness of the adaptive predictive controller proposed in this study the simulation results of steam-reforming plant control based on bilinear model were compared to those of linear model. The simulation results showed that the adaptive predictive controller based on bilinear model provides better performance than those of linear model.

  • PDF

A Study on the Modeling and Diagnostics on Chatter in Endmilling Operation (채터모델링과 진단법에 관한 연구)

  • 김영국;윤문철;하만경;심성보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.971-974
    • /
    • 2001
  • In this study, the static and dynamic characteristics of endmilling process was modelled and the analytic realization of chatter mechanism was discussed. In this regard, We have discussed on the comparative assessment of recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision endmilling operation. In this study, simulation and experimental work were performed to show the malfunctional behaviors. For this purpose, new recursive(RLSM) were adopted for the on-line system identification and monitoring of a machining process, we can apply these new algorithms in real process for detection of abnormal chatter. Also, the stability lobe of chatter was analysed by varying parameter of cutting dynamices in regenerative chatter mechanics.

  • PDF

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.551-551
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

  • PDF

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

Adaptive Control for Regulation of Blood Pressure in Physiological System (생체계 명사주절을 위한 적제제어)

  • 김영철;박용식;이상훈;민병구;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.514-523
    • /
    • 1987
  • Pole assignment adaptive controller has been suggested for automatic regulation of blood pressure by means of hypertinsive of hypotensive drugs. The relationship between the drug infusion rate and the blood pressure was described by an ARMA model. This adaptive algorithm does not reguire preliminary tests for the purpose of tuning the parameters, and have the capability to adjust automatically to changes in the curculatory state of subject. Experimental results on rabbits showed that stable control are occurred during operation. On the basis of theoretical considerations and experimental results, we expected that adaptive drug infusion system using pole assignment procedure might be effectively applied to the blood pressure control in clinical application.

A Study on digital Controller for Power System Stabilization (전력 계통 안정화 제어를 위한 이산시간 제어기 설계)

  • Park, Young-Moon;Hyun, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.135-137
    • /
    • 1992
  • A new algorithm for self-tuning digital controller is proposed. The system to be controlled is identified on line in auto-regressive-moving-average(ARMA) form via recursive least mean square method. The control law is obtained from the minimization of an objective function. The proposed objective function is similar to that of Generalized Minimum Variance(GMV) method but modified to lessen the overshoot and to avoid numerical divergence problem. This algorithm is applied to the power system stabilization and the comparison of the proposed method with a conventional power system stabilizer(PSS) is presented.

  • PDF

A RESEARCH ON THE FUZZY CONTROL BY A NEW METHODOLOGY OF FORMING THE CONTROL RULE (새로운 제어 규칙 형성 방법에 의한 제어에 관한 연구)

  • Park, Young-Moon;Moon, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.252-254
    • /
    • 1992
  • This paper proposes a new algorithm that finds fuzzy control law of the system in which little knowledge has been known. In view or conventional fuzzy method, making control law needs the sense and the knowledge of the system which are provided by expert. But fuzzy control using proposed algorithm needs no expert for hating control law. After construction of the 1st order approximated ARMA model using input-output pairs, new defuzzification method is applied. The deduced rule is stored in fuzzy input space and updated by the proposed algorithm adaptively. To show the validity and effectiveness of proposed control method. simulation result is presented.

  • PDF

A Study on the Modeling and Analysis of Chatter in Turning Operation (선반가공시 채터 모델링과 분석에 관한 연구)

  • 윤문철;조현덕;김성근;김영국;조희근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.76-83
    • /
    • 2001
  • In this study, the static and dynamic characteristics of turning process was modelled and the analytic realization of regen-erative chatter mechanism was discussed. In this regard, we have discussed on the comparative assessment of recursive times series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision turning operation. In this study, simulation and experimental work were performed to show the malfunction behaviors. For this purpose, new Recursive Extended Instrument Variable Method(REIVM) was adopted for the on-line system identification and monitoring of a machining process. Also, we can apply REIVE algorithms in real process for the detection of chatter frequency and dynamic property and analyze the stability lobe of the system by changing a parameter of cutting dynamics in regenerative chatter mechanics, if it is stable or unstable, Also, The stability lobe of chatter was analysed.

  • PDF

Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models

  • Zhu, Zhiwen;Gu, Ming
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.215-233
    • /
    • 2014
  • This paper presents a method to extract flutter derivatives of bridge decks based on a combination of the computational fluid dynamics (CFD), system simulations and system identifications. The incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series as input, with aerodynamic forces time histories acting on the section evaluated as output. System identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish discrete-time aerodynamic models. System simulations of the established models are then performed as to obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. Satisfactory agreements are observed.