• Title/Summary/Keyword: ARMA(1,1)

Search Result 110, Processing Time 0.026 seconds

Comparison of the Dynamic Time Warping Algorithm for Spoken Korean Isolated Digits Recognition (한국어 단독 숫자음 인식을 위한 DTW 알고리즘의 비교)

  • 홍진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.25-35
    • /
    • 1984
  • This paper analysis the Dynamic Time Warping algorithms for time normalization of speech pattern and discusses the Dynamic Programming algorithm for spoken Korean isolated digits recognition. In the DP matching, feature vectors of the reference and test pattern are consisted of first three formant frequencies extracted by power spectrum density estimation algorithm of the ARMA model. The major differences in the various DTW algorithms include the global path constrains, the local continuity constraints on the path, and the distance weighting/normalization used to give the overall minimum distance. The performance criterias to evaluate these DP algorithms are memory requirement, speed of implementation, and recognition accuracy.

  • PDF

Estimation for the Exponential ARMA Model (지수혼합 시계열 모형의 추정)

  • Won Kyung Kim;In Kyu Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.239-248
    • /
    • 1994
  • The Yule-Walker estimator and the approximate conditional least squares estimator of the parameter of the EARMA(1, 1) model are obtained. These two estimators are compared by simulation study. It is shown that the approximate conditional least squares estimator is better in the sense of the mean square error than the Yul-Walker estimator.

  • PDF

Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin (추계학적 기법을 통한 공주지점 유출예측 연구)

  • Ahn, Jung Min;Hur, Young Teck;Hwang, Man Ha;Cheon, Geun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.21-27
    • /
    • 2011
  • When execute runoff forecasting, can not remove perfectly uncertainty of forecasting results. But, reduce uncertainty by various techniques analysis. This study applied various forecasting techniques for runoff prediction's accuracy elevation in Gongju basin. statics techniques is ESP, Period Average & Moving average, Exponential Smoothing, Winters, Auto regressive moving average process. Authoritativeness estimation with results of runoff forecasting by each techniques used MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), RRMSE (Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC (Theil Inequality Coefficient). Result that use MAE, RMSE, RRMSE, MAPE, TIC and confirm improvement effect of runoff forecasting, ESP techniques than the others displayed the best result.

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

Effects of Order Misspecification on Unit Root Tests

  • Shin, Dong-Wan;Lee, Yoon-Dong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.171-180
    • /
    • 1997
  • Effects of order misspecification on statistical behavior of unit root tests are studied. We derive the limiting distributions of the Dickey-Fuller test statistics whose numerators are of the form c .int. W dW + .kappa. where W is a standard Brownian motion on [0, 1] and c is a real number. The term .kappa. is a major consequence of order misspecification and its explict expression is derived. Based on an analysis of .kappa., effects of order misspecification on unit root tests for AR(2), ARMA(1, 1), and AR(3) models are investigated.

  • PDF

A study on the behaviors of chatter in milling operation (밀링가공시의 채터현상 연구)

  • Kim, Y.K.;Yoon, M.C.;Ha, M.K.;Sim, S.B.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.123-132
    • /
    • 2002
  • In this study, the static and dynamic characteristics of endmilling process was modelled and the analytic realization of chatter mechanism was discussed. In this regard, We have discussed on the comparative assessment of recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision endmilling operation. In this study, simulation and experimental work were performed to show the malfunctional behaviors. For this purpose, new recursive least square method (RLSM) were adopted for the on-line system identification and monitoring of a machining process, we can apply these new algorithms in real process for detection of abnormal chatter. Also, The stability lobe of chatter was analysed by varying parameter of cutting dynamices in regenerative chatter mechanics.

  • PDF

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

An Improved Iterative Procedure for Outlier Detection in Time Series (시계열 이상치 탐지를 위한 개선된 반복적 절차)

  • Bui, Anh Tuan;Jun, Chi-Hyuck
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • We address some potential problems with the existing procedures of outlier detection in time series. Also we propose modifications in estimating model parameters and outlier effects in order to reduce the number of tests and to increase the detection accuracy. Experiments with some artificial data sets show that the proposed procedure significantly reduces the number of tests and enhances the accuracy of estimated parameters as well as the detection power.

A Neural Network-Driven Decision Tree Classifier Approach to Time Series Identification (인공신경망 기초 의사결정트리 분류기에 의한 시계열모형화에 관한 연구)

  • 오상봉
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • We propose a new approach to classifying a time series data into one of the autoregressive moving-average (ARMA) models. It is bases on two pattern recognition concepts for solving time series identification. The one is an extended sample autocorrelation function (ESACF). The other is a neural network-driven decision tree classifier(NNDTC) in which two pattern recognition techniques are tightly coupled : neural network and decision tree classfier. NNDTc consists of a set of nodes at which neural network-driven decision making is made whether the connecting subtrees should be pruned or not. Therefore, time series identification problem can be stated as solving a set of local decisions at nodes. The decision values of the nodes are provided by neural network functions attached to the corresponding nodes. Experimental results with a set of test data and real time series data show that the proposed approach can efficiently identify the time seires patterns with high precision compared to the previous approaches.

  • PDF