• Title/Summary/Keyword: ARIZ

Search Result 9, Processing Time 0.034 seconds

Development of S-ARIZ for the Creative Problem Solving Process (창의적 문제 해결 프로세스를 위한 S-ARIZ 개발)

  • Park, Il-Woo;Choi, Seong-Hoon
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • TRIZ is one of the most famous tools for creative problem solving. However, it is said that TRIZ is complicated and difficult to understand and apply to solve problems. In order to resolve these difficulties, this paper presents S-ARIZ, a simplified ARIZ(the algorithm for inventive problem solving). S-ARIZ revised ARIZ-85C on two ways. First, cause and effect analysis is used to define core technical contradictions and control parameters for the physical contradictions. Second, we add 5 inventive principles which revised SIT(systematic inventive thinking) partially to IFR-1 definition (Step 3-2 of ARIZ-85C) to solve the intensified technical contradictions systematically and effectively. It is expect that S-ARIZ can contribute to the rapid spread of TRIZ.

A Study on Solving Engineering Problems of a Piece-removing System using 6-Sigma DMADOV Technique with ARIZ & Brainstorming (6시그마 DMADOV기반 아리즈와 브레인스토밍을 이용한 취부용 피스제거 시스템의 공학문제 해결에 관한연구)

  • Lee, Seong-Jo;Chung, Won-Ji;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • This paper presents a new design algorithm for piece-removing dynamical system, based on 6-Sigma DMADOV technique using ARIZ and Brainstorming. Our design target is the piece-removing system installed on a mobile platform of bead-grinding equipment. The 6-Sigma DMADOV technique guides us design process according to 6 steps, i.e., Define - Measure - Analyze - Design - Optimize - Verify. A Design strategy to reduce the weight of piece-removing dynamical system will be explored by using ARIZ, i.e.,(the abbreviation of Algorithm for Inventive Problem Solving in Russian). The ARIZ will result in a final solution that the height and angle control parts for a cutting tool should be replaced by a kinematical approach, rather than complicated mechatronic approach(using motors). The Optimize step is composed of two sub-steps: (i) Generating process for obtaining several ideas of piece-removing system by using Brainstorming technique, satisfying the final solution derived from the Design step using ARIZ, and (ii) Optimizing process for selecting the most optimal idea of piece-removing system by using Pugh's matrix from the viewpoints of weight, cost and accuracy. The laststep of Verify has shown that the final design obtained by the 6-Sigma DMADOV technique with ARIZ & Brainstormingcan improve an initial design with design requirements satisfied. In this paper, we have shown that ARIZ and Brainstorming can be cooperatively merged into 6-Sigma DMADOV to give us both a formulatedproblem-solving approach and diverse candidate solutions(or ideas) without trial-and-error efforts.

A Study on Improvement of Cooling Performance through Vent Structure Optimization of Carbon Ceramic Composite Disc (카본 세라믹 복합재 디스크의 벤트 구조 최적화를 통한 냉각성능 향상에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Jeon, G.B.;Kim, B.C.;Kwack, J.H.;Lim, D.W.;Hyun, E.J.;Jeon, T.H.;Lee, J.M.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Recently, use of composite materials has been increasing for body structures and chassis parts in the car industry because of weight reduction effect and excellent mechanical thermal characteristics. However, application of composite materials in brake system is very difficult because it is hard to obtain enough brake performance due to low heat storage capacity of the composite materials. In this paper, we will present new carbon ceramic composite disc with high flow characteristic. To obtain this characteristic, new vent structures were designed by using ARIZ method and substance-field model analysis. The flow effect of these vent structures on the brake performance was verified by pugh matrix and cooling test. The test results show improvement of cooling performance up to $30^{\circ}C$. Finally, These results will improve brake the reliability of the brake performance for the high performance vehicles and electric vehicles.

Exploring Strategies for Applying TRIZ to Technology Education (기술과 교육에서 TRIZ(창의적 문제해결 이론)의 적용 방안 탐색)

  • Moon, Daeyoung
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.155-176
    • /
    • 2006
  • The purpose of this study was to explore the strategies for applying TRIZ to technology education. This study was carried out through literature review on contradiction, 40 principles, 76 standard solutions, multi screen method, effects, the law of technology evolution, and ARIZ, and questionnaire survey to investigate the validity. Through this study the strategies for applying TRIZ to technology education were proposed and the validity was identified. Only the '40 Principles' was appropriate to technology education of elementary and middle school. The results of this study were as follows; In elementary school technology education, segmentation, extraction, local quality, asymmetry, consolidation, universality, counterweight, do it in reverse, mediator, self service, dispose, flexible membranes or thin films, changing the color, homogeneity, rejecting and regenerating parts, and composite materials were suitable. And in middle school technology education, segmentation, extraction, local quality, asymmetry, consolidation, universality, counterweight, prior counteraction, prior action, cushion in advance, do it in reverse, dynamicity, partial or excessive action, continuity of useful action, convert harm into benefit, mediator, self service, dispose, flexible membranes or thin films, changing the color, homogeneity, rejecting and regenerating parts, transformation of properties, phase transition, thermal expansion, and composite materials were suitable.

On the Use of TRIZ Tools: Focusing on the Application Cases in S Company (트리즈 도구별 활용도 분석: S사의 적용사례를 중심으로)

  • Kim, Jung-Hyeon;Yeo, Hyung-Seok;Park, Young-Taek
    • Journal of Engineering Education Research
    • /
    • v.20 no.4
    • /
    • pp.3-11
    • /
    • 2017
  • In this study, more than 2,500 cases using TRIZ methodology for 10 years from 2006 to 2016 in S company were analyzed to identify which TRIZ tools have been used for solving field problems. In the previous studies, some attempts were made to analyze the utilization of TRIZ tools, but all of them were based on very limited surveys or cases. The results of this study show that 40 inventive principles were most used, followed by separation principles, standard solutions, trimming, modeling using little people, patterns of evolution, ARIZ and Effects. In addition, detailed analysis were performed for widely used tools such as 40 inventive principles, separation principles, standard solutions, etc. The analysis would be a useful guide for the study and application of TRIZ tools in industry.

Recovery of Toluene in gas by Polydimethylsiloxane/silica hybrid membrane permeation

  • Xu, De-Lin;Chung, Wook-jin;Jung, Bum-Suk;Gun, Eun-Mi;Ariz Lorenzana
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.176-179
    • /
    • 2004
  • Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Current technologies for the treatment of VOC contaminated off-gasses are expensive to operate and more cost effective technologies are needed.(omitted)

  • PDF

Butterfly Chatbot: Finding a Concrete Solution Strategy to Solve Contradiction Problems

  • Hyun, Jung Suk;Park, Chan Jung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • The Butterfly model, which aims to solve contradiction problems, defines the type of contradiction for given problems and finds the problem-solving objectives and their strategies. Unlike the ARIZ algorithm in TRIZ, the Butterfly model is based on logical proposition, which helps to reduce trial and errors and quickly narrows the problem space for solutions. However, it is hard for problem solvers to define the right propositional relations in the previous Butterfly algorithm. In this research, we propose a contradiction solving algorithm which determines the right problem-solving strategy just with yes or no simple questions. Also, we implement the Butterfly Chatbot based on the proposed algorithm that provides visual and auditory information at the same time and help people solve the contradiction problems. The Butterfly Chatbot can solve contradictions effectively in a short period of time by eliminating arbitrary alternative choices and reducing the problem space.