• 제목/요약/키워드: ARIMA trend

검색결과 62건 처리시간 0.033초

ARIMA 추세의 비관측요인 모형과 미국 GDP에 대한 예측력 (UC Model with ARIMA Trend and Forecasting U.S. GDP)

  • 이영수
    • 국제지역연구
    • /
    • 제21권4호
    • /
    • pp.159-172
    • /
    • 2017
  • 비관측요인(unobserved-component)모형을 이용한 GDP의 추세-순환요인 분해에서, 통상적으로 추세는 확률보행 과정을 갖는 것으로 가정된다. 본 연구는 추세를 ARIMA 과정으로 표현하는 경우, GDP 변동에서 갖는 추세요인의 의미가 어떻게 달라지는가를 살펴보고, GDP에 대한 예측력이 개선될 수 있는가의 여부를 미국의 데이터를 이용하여 실증적으로 분석하였다. 모형은 GDP만의 단일변수모형과 물가를 포함하는 2변수모형의 두 가지를 고려하여 설정하였으며, 모형 추정은 비관측요인모형을 상태-공간모형으로 전환한 후 칼만 필터(Kalman filter)를 이용한 최대우도추정법을 사용하였다. GDP에 대한 예측은 축차적 추정(recursive estimation)을 이용한 동적 표본외예측(dynamic out-of-sample) 방식을 사용하였으며, 예측력 비교결과에 대한 검정은 Diebold-Mariano 검정을 이용하였다. 분석 결과는 첫째, 모형의 추정결과에서 ARIMA 추세의 계수가 통계적으로 유의적인 값을 가지며, 둘째, ARIMA 추세 모형이 확률보행 추세 모형보다 GDP 변동의 분산 및 자기 상관성(autocorrelation)을 보다 잘 설명하며, 셋째, 예측력에서 단일변수보다는 2변수모형의 예측력이 그리고 확률보행 추세보다는 ARIMA 추세를 갖는 모형의 예측력이 통계적으로 유의하게 높은 것으로 나타났다. 이러한 결과들은 GDP 추세-순환 요인 분해에서 추세를 ARIMA 과정으로 표현하는 것이 보다 타당하다는 것을 시사하고 있다.

ARIMA AR(1) 모형을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using ARIMA AR(1))

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제8권2호
    • /
    • pp.35-40
    • /
    • 2008
  • 소트프웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조 증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구되었다. 고장 시간 예측에 사용된 고장시간자료는 소프트웨어 고장 시간 분포에 널리 사용되는 와이블 분포에서 형상모수가 1이고 척도모수가 0.5를 가진 난수를 발생된 모의 자료를 이용 하였다. 이 자료를 이용하여 시계열 분석에 이용되는 ARIMA 모형 중에서 AR(1) 모형과 모의실험을 통한 예측 방법을 제안하였다. 이 방법에서 ARIMA 모형을 이용한 예측방법이 효율적임을 입증 하였다.

  • PDF

머신러닝 기반 시계열 예측 시스템 비교 및 최적 예측 시스템 구현 (Comparison and Implementation of Optimal Time Series Prediction Systems Using Machine Learning)

  • 한용희;고방원
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.183-189
    • /
    • 2024
  • 본 연구는 시계열 데이터를 효과적으로 예측하기 위해 데이터를 Seasonal-Trend Decomposition on Loess 을 통해 추세, 계절성, 잔차 성분으로 분해한 후 추세 성분에는 ARIMA, 계절성 성분에는 Fourier Series Regression, 잔차 성분에는 XGBoost를 적용하는 하이브리드 예측 모델을 제안하였다. 또한, ARIMA, XGBoost, LSTM, EMD-ARIMA, CEEMDAN-LSTM 모델을 포함한 성능 비교 실험을 수행하여 각 모델의 예측 성능을 평가하였다. 실험 결과, 제안된 하이브리드 모델은 MAPE, MAAPE, RMSE 지표에서 각각 3.8%, 3.5%, 0.35로 가장 좋은 평가 지표 값을 보이며 기존의 단일 모델보다 우수한 성능을 보였다.

소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구 (A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach)

  • 양동원;이준기
    • 한국IT서비스학회지
    • /
    • 제19권4호
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

A Machine Learning Univariate Time series Model for Forecasting COVID-19 Confirmed Cases: A Pilot Study in Botswana

  • Mphale, Ofaletse;Okike, Ezekiel U;Rafifing, Neo
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.225-233
    • /
    • 2022
  • The recent outbreak of corona virus (COVID-19) infectious disease had made its forecasting critical cornerstones in most scientific studies. This study adopts a machine learning based time series model - Auto Regressive Integrated Moving Average (ARIMA) model to forecast COVID-19 confirmed cases in Botswana over 60 days period. Findings of the study show that COVID-19 confirmed cases in Botswana are steadily rising in a steep upward trend with random fluctuations. This trend can also be described effectively using an additive model when scrutinized in Seasonal Trend Decomposition method by Loess. In selecting the best fit ARIMA model, a Grid Search Algorithm was developed with python language and was used to optimize an Akaike Information Criterion (AIC) metric. The best fit ARIMA model was determined at ARIMA (5, 1, 1), which depicted the least AIC score of 3885.091. Results of the study proved that ARIMA model can be useful in generating reliable and volatile forecasts that can used to guide on understanding of the future spread of infectious diseases or pandemics. Most significantly, findings of the study are expected to raise social awareness to disease monitoring institutions and government regulatory bodies where it can be used to support strategic health decisions and initiate policy improvement for better management of the COVID-19 pandemic.

한국형 X11ARIMA 프로시져에 관한 연구 (X11ARIMA Procedure)

  • 박유성;최현희
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.335-350
    • /
    • 1998
  • X11ARIMA는 1965년 미국 센서스국에서 개발된 X11분석 방법에 기초한 시계열 분석방법으로 Dagum(1975)에 의해 개발되었다. 이 기법은 Dagum(1988)에 의하여 북미지역의 174개의 경제지수를 바탕으로 일부 기본모형이 수정·보완되어 오늘날에 이르고 있다. 최근에는 회귀 모형과 ARIMA모형을 동시에 고려하여 특이치와 추세 변환효과(outlier arid Trend-change effects), 계절변동(seasonal effect), 그리고 달력효과(calendal effect) 등을 추정한 William 등(1995)과 Chen과 Findley(1995)의 X12ARIMA분석 방법이 소개되었다. 그러나 위의 모든 기법들은 주로 북미지역의 경제지수를 기초로 하고 있다. 본 논문에서는 우리나라의 산업중분류에서 산출되는 102개(생산(27), 출하(27), 재고(27), 가동률(21))의 지수에 대한 우리나라의 표준 ARIMA모형을 제시하고, 우리나라에 적합한 이동평균항수를 제공하고자 한다. 그리고 우리나라의 설, 추석 등의 명절효과를 태양력으로 전환함과 동시에, 최근에 논의되고 있는 X12ARIMA에서 사용되는 회귀모형과 ARIMA모형을 동시에 고려하는 명절효과를 도출하고자 한다.

  • PDF

Trading Day Effect on the Seasonal Adjustment for Korean Industrial Activities Trend Using X-12-ARIMA

  • Park, Worlan;Kang, Hee Jeung
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.513-523
    • /
    • 2000
  • The X-12-ARIMA program was utilized on the analysis of the time series trend on 76 Korean industrial activities data in order to ensure that the trading day effect adjustment as well as the seasonal effect adjustment is needed to extract the fundamental trend-cycle factors from various economic time series data. The trading day effect is strongly correlated with the activity of production and shipping but not with the activity of inventory. Furthermore, the industrial activities were classified with respect to the sensitivity on the tranding day effect.

  • PDF

PREDICTION OF FAULT TREND IN A LNG PLANT USING WAVELET TRANSFORM AND ARIMA MODEL

  • Yeonjong Ju;Changyoon Kim;Hyoungkwan Kim
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.388-392
    • /
    • 2009
  • Operation of LNG (Liquefied Natural Gas) plants requires an effective maintenance strategy. To this end, the long-term and short-term trend of faults, such as mechanical and electrical troubles, should be identified so as to take proactive approach for ensuring the smooth and productive operation. However, it is not an easy task to predict the fault trend in LNG plants. Many variables and unexpected conditions make it quite difficult for the facility manager to be well prepared for future faulty conditions. This paper presents a model to predict the fault trend in a LNG plant. ARIMA (Auto-Regressive Integrated Moving Average) model is combined with Wavelet Transform to enhance the prediction capability of the proposed model. Test results show the potential of the proposed model for the preventive maintenance strategy.

  • PDF

Multiplicative ARIMA 모형에 의한 월유량의 추계학적 모의 예측 (Stochastic Forecasting of Monthly River Flwos by Multiplicative ARIMA Model)

  • 박무종;윤용남
    • 물과 미래
    • /
    • 제22권3호
    • /
    • pp.331-339
    • /
    • 1989
  • 추계학적 모형 중의 하나인 Multiplicative ARIMA 모형을 사용하여 주기성과 경향성을 가지는 월유량계열을 예측하였으며 그 모형의 적합성은 낙동강 유역의 진동 수위 관측 지점에서의 23년간의 월 유량자료를 사용하여 검정하였다. 최종적으로 산정된 ARIMA (2,0,0)$\times$$(0,1,1)_{12}$ 모형의 변수는 21년간의 자료를 사용하여 산정하였으며 나머지 2년간의 월 유량자료는 예측치와 관측치를 비교하는데 사용하였다. 본 모형에 의한 에측치와 관측치의 비교결과 Multiplicative ARIMA 모형은 진동지점의 월유량 계열의 예측에 적합함이 판명되었다.

  • PDF

ARIMA 모형을 이용한 보이스피싱 발생 추이 예측 (Forecasting the Occurrence of Voice Phishing using the ARIMA Model)

  • 추정호;주용휘;엄정호
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.79-86
    • /
    • 2022
  • 보이스피싱은 가짜 금융기관, 검찰청, 경찰청 등을 사칭하여 개인의 인증번호와 신용카드 정보를 알아내거나 예금을 인출하게 하여 탈취하는 사이버 범죄이다. 최근에는 교묘하고도 은밀한 방법으로 보이스피싱이 이루어지고 있다. '18~'21년 발생한 보이스피싱의 추세를 분석하면, 보이스피싱이 발생되는 시기에 예금 인출이 급격하게 증가하여 시계열 분석에 모호함을 주는 계절성이 존재함을 발견하였다. 이에 본 연구에서는 보이스피싱 발생 추이의 정확한 예측을 위해서 계절성을 X-12 계절성 조정 방법론으로 조정하고, ARIMA 모형을 이용하여 2022년 보이스피싱 발생을 예측하였다.