• Title/Summary/Keyword: ARIMA analysis

Search Result 201, Processing Time 0.023 seconds

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

A Study on the Application of the Price Prediction of Construction Materials through the Improvement of Data Refactor Techniques (Data Refactor 기법의 개선을 통한 건설원자재 가격 예측 적용성 연구)

  • Lee, Woo-Yang;Lee, Dong-Eun;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.66-73
    • /
    • 2023
  • The construction industry suffers losses due to failures in demand forecasting due to price fluctuations in construction raw materials, increased user costs due to project cost changes, and lack of forecasting system. Accordingly, it is necessary to improve the accuracy of construction raw material price forecasting. This study aims to predict the price of construction raw materials and verify applicability through the improvement of the Data Refactor technique. In order to improve the accuracy of price prediction of construction raw materials, the existing data refactor classification of low and high frequency and ARIMAX utilization method was improved to frequency-oriented and ARIMA method utilization, so that short-term (3 months in the future) six items such as construction raw materials lumber and cement were improved. ), mid-term (6 months in the future), and long-term (12 months in the future) price forecasts. As a result of the analysis, the predicted value based on the improved Data Refactor technique reduced the error and expanded the variability. Therefore, it is expected that the budget can be managed effectively by predicting the price of construction raw materials more accurately through the Data Refactor technique proposed in this study.

Estimation of Layered Periodic Autoregressive Moving Average Models (계층형 주기적 자기회귀 이동평균 모형의 추정)

  • Lee, Sung-Duck;Kim, Jung-Gun;Kim, Sun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.507-516
    • /
    • 2012
  • We study time series models for seasonal time series data with a covariance structure that depends on time and the periodic autocorrelation at various lags $k$. In this paper, we introduce an ARMA model with periodically varying coefficients(PARMA) and analyze Arosa ozone data with a periodic correlation in the practical case study. Finally, we use a PARMA model and a seasonal ARIMA model for data analysis and show the performance of a PARMA model with a comparison to the SARIMA model.

A Study on Daily Water Demand Prediction Model (급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究))

  • Koo, Jayoug;Koizwui, Akirau;Inakazu, Toyono
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

Analysis and Forecast of Non-Stationary Monthly Steam Flow (비정상 월유량 시계열의 해석과 예측)

  • 이재형;선우중호
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 1978
  • An attemption of synthesizing and forecasting of monthly river flow has been made by employing a linear stochastic difference equation model. As one of the linear stochestic difference equation model, an ARIMA Type is tested to find the suitability of the model to the monthly river flows. On the assumption of the stationary covariacne of differenced monthly river flows the model is identrfield and is evaluated so that the residuale have the minimum variance. Finally a test is performed to finld the residerals beings White noise. Monthly river flows at six stations in Han River Basin are applied for case studies. It was found that the difference operator is a good measure of forecasting the monthly river flow.

  • PDF

Forecasting Foreign Visitors using SARIMAX Models with the Exogenous Variable of Demand Decrease (수요감소 요인 외생변수를 갖는 SARIMAX 모형을 이용한 관광수요 예측)

  • Lee, Geun-Cheol;Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).

Methoden Zur Beschreibung dar Unfallgeschehens des - Versuch eines Vergleichs Zwischen der Bundesrepublik Deutschland und der Republik Korea - (한국과 서독간의 교통안전 비교)

  • 김홍상
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.2
    • /
    • pp.55-72
    • /
    • 1987
  • The work analyzes the existing situation and defines special problems concerning traffic accidents in the two countries. The report is divided into three parts: 1) Using the global approach of SMEED, the data were evaluated using multiple regression analysis, and homogeneous groups of countries were defined by cluster analysis. In the global approach, the linear model is better than SMEED's non-linear model in explaining the number of fatalities. Among the different groups of countries, the linear approach was found to be better suited for industrialized countries and the non-linear approach better for the developing countries. T도 comparison of traffic fatality data for the Federal Republic the developing countries. The comparison of traffic fatality data for the Federal Republic of Germany and the Republic of Korea showed different regression equations during the same time period. 2) The BOX/JENKINS time series analysis on a monthly basis points out clearly similar seasonal patterns for the two countries over the years studied. The decrease in traffic accidents following the intensification of the safety belt requirement was proved in the ARIMA model. It amounts to 7 to 8 percent fewer personal injury accidents and fatal accidents. The identified increase in safety in the Federal Republic of Germany since the 1970s is mainly due to the reduction of accident severity in residential areas. 3) Speeds and headways on motorways in th3e two countries were also compared. The measurements point out that German road users drive faster, take more risks, and accept shorter time gaps than Korean road users. However, the accident statistics show accident rates for Korea that are several times higher than those in the Federal Republic of Germany.

  • PDF

Air pollution study using factor analysis and univariate Box-Jenkins modeling for the northwest of Tehran

  • Asadollahfardi, Gholamreza;Zamanian, Mehran;Mirmohammadi, Mohsen;Asadi, Mohsen;Tameh, Fatemeh Izadi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.233-246
    • /
    • 2015
  • High amounts of air pollution in crowded urban areas are always considered as one of the major environmental challenges especially in developing countries. Despite the errors in air pollution prediction, the forecasting of future data helps air quality management make decisions promptly and properly. We studied the air quality of the Aqdasiyeh location in Tehran using factor analysis and the Box-Jenkins time series methods. The Air Quality Control Company (AQCC) of the Municipality of Tehran monitors seven daily air quality parameters, including carbon monoxide (CO), Nitrogen Monoxide (NO), Nitrogen dioxide ($NO_2$), $NO_x$, ozone ($O_3$), particulate matter ($PM_{10}$) and sulfur dioxide ($SO_2$). We applied the AQCC data for our study. According to the results of the factor analysis, the air quality parameters were divided into two factors. The first factor included CO, $NO_2$, NO, $NO_x$, and $O_3$, and the second was $SO_2$ and $PM_{10}$. Subsequently, the Box- Jenkins time series was applied to the two mentioned factors. The results of the statistical testing and comparison of the factor data with the predicted data indicated Auto Regressive Integrated Moving Average (0, 0, 1) was appropriate for the first factor, and ARIMA (1, 0, 1) was proper for the second one. The coefficient of determination between the factor data and the predicted data for both models were 0.98 and 0.983 which may indicate the accuracy of the models. The application of these methods could be beneficial for the reduction of developing numbers of mathematical modeling.

Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model (인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘)

  • Gun-Ha Park;Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.383-388
    • /
    • 2024
  • This paper is a study to derive the predicted value of power generation based on the photovoltaic power generation data measured in Jeollanam-do, South Korea. Multivariate variables such as direct current, alternating current, and environmental data were measured in the inverter to measure the amount of power generation, and pre-processing was performed to ensure the stability and reliability of the measured values. Correlation analysis used only data with high correlation with power generation in time series data for prediction using partial autocorrelation function (PACF). Deep learning models were used to measure the amount of power generation to predict the amount of photovoltaic power generation, and the results of correlation analysis of each multivariate variable were used to increase the prediction accuracy. Learning using refined data was more stable than when existing data were used as it was, and the solar power generation prediction algorithm was improved by using only highly correlated variables among multivariate variables by reflecting the correlation analysis results.

Relationships Between the Characteristics of the Business Data Set and Forecasting Accuracy of Prediction models (시계열 데이터의 성격과 예측 모델의 예측력에 관한 연구)

  • 이원하;최종욱
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.133-147
    • /
    • 1998
  • Recently, many researchers have been involved in finding deterministic equations which can accurately predict future event, based on chaotic theory, or fractal theory. The theory says that some events which seem very random but internally deterministic can be accurately predicted by fractal equations. In contrast to the conventional methods, such as AR model, MA, model, or ARIMA model, the fractal equation attempts to discover a deterministic order inherent in time series data set. In discovering deterministic order, researchers have found that neural networks are much more effective than the conventional statistical models. Even though prediction accuracy of the network can be different depending on the topological structure and modification of the algorithms, many researchers asserted that the neural network systems outperforms other systems, because of non-linear behaviour of the network models, mechanisms of massive parallel processing, generalization capability based on adaptive learning. However, recent survey shows that prediction accuracy of the forecasting models can be determined by the model structure and data structures. In the experiments based on actual economic data sets, it was found that the prediction accuracy of the neural network model is similar to the performance level of the conventional forecasting model. Especially, for the data set which is deterministically chaotic, the AR model, a conventional statistical model, was not significantly different from the MLP model, a neural network model. This result shows that the forecasting model. This result shows that the forecasting model a, pp.opriate to a prediction task should be selected based on characteristics of the time series data set. Analysis of the characteristics of the data set was performed by fractal analysis, measurement of Hurst index, and measurement of Lyapunov exponents. As a conclusion, a significant difference was not found in forecasting future events for the time series data which is deterministically chaotic, between a conventional forecasting model and a typical neural network model.

  • PDF