• Title/Summary/Keyword: ARIMA Forecasting

Search Result 225, Processing Time 0.023 seconds

Air pollution study using factor analysis and univariate Box-Jenkins modeling for the northwest of Tehran

  • Asadollahfardi, Gholamreza;Zamanian, Mehran;Mirmohammadi, Mohsen;Asadi, Mohsen;Tameh, Fatemeh Izadi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.233-246
    • /
    • 2015
  • High amounts of air pollution in crowded urban areas are always considered as one of the major environmental challenges especially in developing countries. Despite the errors in air pollution prediction, the forecasting of future data helps air quality management make decisions promptly and properly. We studied the air quality of the Aqdasiyeh location in Tehran using factor analysis and the Box-Jenkins time series methods. The Air Quality Control Company (AQCC) of the Municipality of Tehran monitors seven daily air quality parameters, including carbon monoxide (CO), Nitrogen Monoxide (NO), Nitrogen dioxide ($NO_2$), $NO_x$, ozone ($O_3$), particulate matter ($PM_{10}$) and sulfur dioxide ($SO_2$). We applied the AQCC data for our study. According to the results of the factor analysis, the air quality parameters were divided into two factors. The first factor included CO, $NO_2$, NO, $NO_x$, and $O_3$, and the second was $SO_2$ and $PM_{10}$. Subsequently, the Box- Jenkins time series was applied to the two mentioned factors. The results of the statistical testing and comparison of the factor data with the predicted data indicated Auto Regressive Integrated Moving Average (0, 0, 1) was appropriate for the first factor, and ARIMA (1, 0, 1) was proper for the second one. The coefficient of determination between the factor data and the predicted data for both models were 0.98 and 0.983 which may indicate the accuracy of the models. The application of these methods could be beneficial for the reduction of developing numbers of mathematical modeling.

Demand Prediction of Furniture Component Order Using Deep Learning Techniques (딥러닝 기법을 활용한 가구 부자재 주문 수요예측)

  • Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

Labor market forecasts for Information and communication construction business (정보통신공사업 인력수급차 분석 및 전망)

  • Kwak, Jeong Ho;Kwun, Tae Hee;Oh, Dong-Suk;Kim, Jung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • In this era of smart convergent environment wherein all industries are converged on ICT infrastructure and industries and cultures come together, the information and communication construction business is becoming more important. For the information and communication construction business to continue growing, it is very important to ensure that technical manpower is stably supplied. To date, however, there has been no theoretically methodical analysis of manpower supply and demand in the information and communications construction business. The need for the analysis of manpower supply and demand has become even more important after the government announced the road map for the development of construction business in December 2014 to seek measures to strengthen the human resources capacity based on the mid- to long-term manpower supply and demand analysis. As such, this study developed the manpower supply and demand forecast model for the information and communications construction business and presented the result of manpower supply and demand analysis. The analysis suggested that an overdemand situation would arise since the number of graduates of technical colleges decreased beginning 2007 because of fewer students entering technical colleges and due to the restructuring and reform of departments. In conclusion, it cited the need for the reeducation of existing manpower, continuous upgrading of professional development in the information and communications construction business, and provision of various policy incentives.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.