• Title/Summary/Keyword: ARCH model

Search Result 499, Processing Time 0.023 seconds

Reference points suitable for evaluation of the additional arch length required for leveling the curve of Spee

  • Cho, Yong-Hwa;Lim, Sung-Hoon;Gang, Sung-Nam
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.356-363
    • /
    • 2016
  • Objective: The additional arch length required for leveling (AALL) the curve of Spee (COS) can be estimated by subtracting the two-dimensional (2D) arch circumference, which is the projection of the three-dimensional (3D) arch circumference onto the occlusal plane, from the 3D arch circumference, which represents the arch length after leveling the COS. The purpose of this study was to determine whether the cusp tips or proximal maximum convexities are more appropriate reference points for estimating the AALL. Methods: Sixteen model setups of the mandibular arch with COS depths ranging from 0 mm to 4.7 mm were constructed using digital simulation. Arch circumferences in 2D and 3D were measured from the cusp tips and proximal maximum convexities and used to calculate the AALL. The values obtained using the two reference points were compared with the paired t -test. Results: Although the 3D arch circumference should be constant regardless of the COS depth, it decreased by 3.8 mm in cusp tip measurements and by 0.4 mm in proximal maximum convexity measurements as the COS deepened to 4.7 mm. AALL values calculated using the cusp tips as reference points were significantly smaller than those calculated using the proximal maximum convexities (p = 0.002). Conclusions: The AALL is underestimated when the cusp tips are used as measurement reference points; the AALL can be measured more accurately using the proximal maximum convexities.

Behavior of 2 Arch Tunnel in Sand (사질토지반에서 2 Arch 터널의 거동)

  • Lee, Sang-Duk;Cheon, Eun-Sook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.171-182
    • /
    • 2004
  • This study is focused on finding out the mechanical behavior of pillars and the ground adjacent to the tunnel depending on the central tunnel size and the invert during the construction of 2 arch tunnels in the sandy ground. Model tests were performed in the trap door system, which was composed of 3 separately movable plates. Central pillar was installed on the central movable plate to measure the pillar loads during the excavation of pilot tunnel and the main tunnel. The load-transfer and the loosening load were measured at the bottom plates adjacent to the 2 arch tunnels. The ground settlement and displacement of the tunnel lining were also measured. As results, not only pillar load but also the load transfer mechanism was influenced by the construction sequences, central tunnel size, and the invert.

  • PDF

STRICT STATIONARITY AND FUNCTIONAL CENTRAL LIMIT THEOREM FOR ARCH/GRACH MODELS

  • Lee, Oe-Sook;Kim, Ji-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.495-504
    • /
    • 2001
  • In this paper we consider the (generalized) autoregressive model with conditional heteroscedasticity (ARCH/GARCH models). We willing give conditions under which strict stationarity, ergodicity and the functional central limit theorem hold for the corresponding models.

  • PDF

Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner

  • Zhang, Xu;Zhang, Chengping;Min, Bo;Xu, Youjun
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.399-410
    • /
    • 2020
  • Cavities often develop behind the vault during the construction of double-arch tunnels, generally in the form of various defects. The study evaluates the impact of cavities behind the vault on the mechanical and failure behaviors of double-arch tunnels. Cavities of the same sizes are introduced at the vault and the shoulder close to the central wall of double-arch tunnels. Physical model tests are performed to investigate the liner stress variation, the earth pressure distribution and the process of progressive failure. Results reveal that the presence of cavities behind the liner causes the re-distribution of the earth pressure and induces stress concentration near the boundaries of cavities, which results in the bending moments in the liner inside the cavity to reverse sign from compression to tension. The liner near the invert becomes the weak region and stress concentration points are created in the outer fiber of the liner at the bottom of the sidewall and central wall. It is suggested that grouting into the foundation soils and backfilling injection should be carried out to ensure the tunnel safety. Changes in the location of cavities significantly impact the failure pattern of the liner close to the vault, e.g., cracks appear in the outer fiber of the liner inside the cavity when a cavity is located at the shoulder close to the central wall, which is different from the case that the cavity locates at the vault, whereas changes in the location of cavities have a little influence on the liner at the bottom of the double-arch tunnels.

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

An evaluation of validity of three dimensional digital model fabricated by dental scannable stone (치과용 스캐너 전용 석고를 이용하여 제작된 3차원 디지털 모형의 정확도 평가)

  • Kim, Ki-Baek;Kim, Su-Jin;Kim, Jae-Hong;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the validity of digital models fabricated by dental scannable stone. Methods: Twenty same cases of stone models(maxillary full arch) were manufactured. Intercanine distance, intermolar distance, two dental arch lengths(right, left), two diagonal of dental arch lengths(right, left) were measured for comparison. Each of ten stone models were measured by digital vernier calipers and scanned by dental scanner. Ten digital models were measured by CAD program. The mean(SDs) values were compared by a Mann-Whitney U test(${\alpha}$=0.05). Results: No statistically significant differences between the two groups were found at intermolar distance, dental arch length(right)(p>0.05). However, intercanine distance, dental arch length(left) and two diagonal of dental arch lengths(right, left) were statistically significant(p<0.05). Conclusion: Stone models fabricated by dental scannable stone showed larger than digital models.

A Study on the Stress Distribution of Pillar Basement during Two-arch Tunnel Excavation in Discontinuous Rock Mass (불연속성 암반에서 2-아치 터널 굴착시 필러 기초부 응력 분포에 대한 연구)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • Large scale model tests and numerical analyses were performed in order to investigate the stress distribution on the base of pillar during two-arch tunnel excavation in the regularly jointed rocks. It was observed that the stress was irregularly distributed on pillar and the angle of discontinuities seriously influenced on the stress distribution on the pillar base in the discontinuous rock mass. In the numerical analyses results, It was shown that the stress level of pillar was greatly changed depending on the excavation sequences of two-arch tunnel. It was also observed that stress distributed eccentrically at the pillar as well as at the base of pillar. It is necessary to consider this point for the design of two-arch tunnel.

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.

In-plane buckling strength of fixed arch ribs subjected vertical distributed loading (수직 등분포 하중을 받는 고정 지점 포물선 아치 리브의 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.439-447
    • /
    • 2005
  • When arch ribs are subjected to vertical loading, they may buckle suddenly towards the in-plane direction. Therefore, the designer should consider their in-plane stability. In this paper, the in-plane elastic and inelastic buckling strength of parabolic, fixed arch ribs subjected to vertical distributed loading were investigated using the finite element method. A finite element model for the snap-through and inelastic behavior of arch ribs was verified using other researchers' test results. The ultimate strength of arch ribs was determined by taking into account their large deformation, material inelasticity, and residual stress. Finally, the finite element analysis results were compared with the EC3 design code.