• Title/Summary/Keyword: AR-GARCH Model

Search Result 21, Processing Time 0.024 seconds

A Study on Performance Analysis of Short Term Internet Traffic Forecasting Models (단기 측정 인터넷 트래픽 예측을 위한 모형 성능 비교 연구)

  • Ha, M.H.;Son, H.G.;Kim, S.
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.415-422
    • /
    • 2012
  • In this paper, we first the compare the performance of Holt-Winters, FSARIMA, AR-GARCH and Seasonal AR-GARCH models with in the short term based data. The results of the compared data show that the Holt-Winters model outperformed other models in terms of forecasting accuracy.

A Study on the Tourism Combining Demand Forecasting Models for the Tourism in Korea (관광 수요를 위한 결합 예측 모형에 대한 연구)

  • Son, H.G.;Ha, M.H.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.251-259
    • /
    • 2012
  • This paper applies forecasting models such as ARIMA, Holt-Winters and AR-GARCH models to analyze daily tourism data in Korea. To evaluate the performance of the models, we need single and double seasonal models that compare the RMSE and SE for a better accuracy of the forecasting models based on Armstrong (2001).

Comparison of time series predictions for maximum electric power demand (최대 전력수요 예측을 위한 시계열모형 비교)

  • Kwon, Sukhui;Kim, Jaehoon;Sohn, SeokMan;Lee, SungDuck
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.623-632
    • /
    • 2021
  • Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.

Systematic Risk Analysis on Bitcoin Using GARCH Model (GARCH 모형을 활용한 비트코인에 대한 체계적 위험분석)

  • Lee, Jung Mann
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.157-169
    • /
    • 2018
  • The purpose of this study was to examine the volatility of bitcoin, diagnose if bitcoin are a systematic risk asset, and evaluate their effectiveness by estimating market beta representing systematic risk using GARCH (Generalized Auto Regressive Conditional Heteroskedastieity) model. First, the empirical results showed that the market beta of Bitcoin using the OLS model was estimated at 0.7745. Second, using GARCH (1, 2) model, the market beta of Bitcoin was estimated to be significant, and the effects of ARCH and GARCH were found to be significant over time, resulting in conditional volatility. Third, the estimated market beta of the GARCH (1, 2), AR (1)-GARCH (1), and MA (1)-GARCH (1, 2) models were also less than 1 at 0.8819, 0.8835, and 0.8775 respectively, showing that there is no systematic risk. Finally, in terms of efficiency, GARCH model was more efficient because the standard error of a market beta was less than that of the OLS model. Among the GARCH models, the MA (1)-GARCH (1, 2) model considering non-simultaneous transactions was estimated to be the most appropriate model.

An Analysis of Categorical Time Series Driven by Clipping GARCH Processes (연속형-GARCH 시계열의 범주형화(Clipping)를 통한 분석)

  • Choi, M.S.;Baek, J.S.;Hwan, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.683-692
    • /
    • 2010
  • This short article is concerned with a categorical time series obtained after clipping a heteroscedastic GARCH process. Estimation methods are discussed for the model parameters appearing both in the original process and in the resulting binary time series from a clipping (cf. Zhen and Basawa, 2009). Assuming AR-GARCH model for heteroscedastic time series, three data sets from Korean stock market are analyzed and illustrated with applications to calculating certain probabilities associated with the AR-GARCH process.

GARCH-X(1, 1) model allowing a non-linear function of the variance to follow an AR(1) process

  • Didit B Nugroho;Bernadus AA Wicaksono;Lennox Larwuy
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • GARCH-X(1, 1) model specifies that conditional variance follows an AR(1) process and includes a past exogenous variable. This study proposes a new class from that model by allowing a more general (non-linear) variance function to follow an AR(1) process. The functions applied to the variance equation include exponential, Tukey's ladder, and Yeo-Johnson transformations. In the framework of normal and student-t distributions for return errors, the empirical analysis focuses on two stock indices data in developed countries (FTSE100 and SP500) over the daily period from January 2000 to December 2020. This study uses 10-minute realized volatility as the exogenous component. The parameters of considered models are estimated using the adaptive random walk metropolis method in the Monte Carlo Markov chain algorithm and implemented in the Matlab program. The 95% highest posterior density intervals show that the three transformations are significant for the GARCHX(1, 1) model. In general, based on the Akaike information criterion, the GARCH-X(1, 1) model that has return errors with student-t distribution and variance transformed by Tukey's ladder function provides the best data fit. In forecasting value-at-risk with the 95% confidence level, the Christoffersen's independence test suggest that non-linear models is the most suitable for modeling return data, especially model with the Tukey's ladder transformation.

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

Application of Volatility Models in Region-specific House Price Forecasting (예측력 비교를 통한 지역별 최적 변동성 모형 연구)

  • Jang, Yong Jin;Hong, Min Goo
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.41-50
    • /
    • 2017
  • Previous studies, especially that by Lee (2014), showed how time series volatility models can be applied to the house price series. As the regional housing market trends, however, have shown significant differences of late, analysis with national data may have limited practical implications. This study applied volatility models in analyzing and forecasting regional house prices. The estimation of the AR(1)-ARCH(1), AR(1)-GARCH(1,1), and AR(1)-EGARCH(1,1,1) models confirmed the ARCH and/or GARCH effects in the regional house price series. The RMSEs of out-of-sample forecasts were then compared to identify the best-fitting model for each region. The monthly rates of house price changes in the second half of 2017 were then presented as an example of how the results of this study can be applied in practice.

A Study on Demand Forecasting for KTX Passengers by using Time Series Models (시계열 모형을 이용한 KTX 여객 수요예측 연구)

  • Kim, In-Joo;Sohn, Hueng-Goo;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1257-1268
    • /
    • 2014
  • Since the introduction of KTX (Korea Tranin eXpress) in Korea reilway market, number of passengers using KTX has been greatly increased in the market. Thus, demand forecasting for KTX passengers has been played a importantant role in the train operation and management. In this paper, we study several time series models and compare the models based on considering special days and others. We used the MAPE (Mean Absolute Percentage Errors) to compare the performance between the models and we showed that the Reg-AR-GARCH model outperformanced other models in short-term period such as one month. In the longer periods, the Reg-ARMA model showed best forecasting accuracy compared with other models.

TAR-GARCH processes as Alternative Models for Korea Stock Prices Data (TAR-GARCH 모형을 이용한 국내 주가 자료 분석)

  • 황선영;김은주
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.437-445
    • /
    • 2000
  • The present paper is introducing a new model so called TAR-GARCH in the context of stock price analysis Conventional models such as AR(l), TAR(l), ARCH(I) and GARCH( 1,1) are briefly reviewed and TAR-GARCH is suggested in analyizing domestic stock prices. Also, relevant iterative estimation procedure is developed. It is seen that TAR-GARCH provides the better fit relative to traditional first order models for stock prices data in Korea.

  • PDF