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Abstract
GARCH-X(1, 1) model specifies that conditional variance follows an AR(1) process and includes a past

exogenous variable. This study proposes a new class from that model by allowing a more general (non-linear)
variance function to follow an AR(1) process. The functions applied to the variance equation include exponential,
Tukey’s ladder, and Yeo–Johnson transformations. In the framework of normal and student-t distributions for
return errors, the empirical analysis focuses on two stock indices data in developed countries (FTSE100 and
SP500) over the daily period from January 2000 to December 2020. This study uses 10-minute realized volatility
as the exogenous component. The parameters of considered models are estimated using the adaptive random
walk metropolis method in the Monte Carlo Markov chain algorithm and implemented in the Matlab program.
The 95% highest posterior density intervals show that the three transformations are significant for the GARCH-
X(1, 1) model. In general, based on the Akaike information criterion, the GARCH-X(1, 1) model that has return
errors with student-t distribution and variance transformed by Tukey’s ladder function provides the best data
fit. In forecasting value-at-risk with the 95% confidence level, the Christoffersen’s independence test suggest
that non-linear models is the most suitable for modeling return data, especially model with the Tukey’s ladder
transformation.
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1. Introduction

The volatility of financial asset values (such as values of currency rates, futures interest rates, stock
indices, or commodities) is often understood as a risk indicator for financial market participants and
observers. The higher the volatility, the higher the risk for investors. Because volatility comes from
the word ‘volatile’, which refers to asset prices condition that tends to fluctuate sharply and regularly.

One of the volatility models that change consistently over time (called heteroscedasticity) to ex-
press the volatility of the financial asset returns (the differences in the financial asset values over time)
is GARCH (generalized autoregressive conditional heteroscedasticity) model proposed by Bollerslev
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(1986). Due to its effectiveness in capturing the regular fluctuations behavior of financial data volatil-
ity, the popularity and use of GARCH-type models in the financial sector’s risk has increased in recent
years (Mahajan, 2022).

The model was then extended by Engle and Patton (2001) and Engle (2002) into GARCH-X by
adding high-frequency data, such as realized volatility (RV) measures, as exogenous components in
the volatility dynamics equation. Han (2015) had proven empirically that the exogenous component’s
parameters are significant, causing the model to be able to capture the slow decaying autocorrela-
tion of squared returns. In addition, the GARCH-X(1, 1) model provides a better data fit than the
GARCH(1, 1) model.

Recently, Nugroho et al. (2021) generalized the GARCH(1, 1) volatility process by applying non-
linear transformations (including Tukey, Box–Cox, exponential, modulus, and Yeo–Johnson) for the
volatility of lag one. They showed empirically that the proposed model has the possibility that one
might be able to fit the data better than the untransformed volatility model. Meanwhile, most empirical
studies have shown that financial asset returns generally do not meet the characteristics of a normal
distribution but typically leptokurtic and produce heavy tail behaviour. One of the distributions that
are popular and should always be employed in the practical finance research to accommodate heavy
tails is the student-t distribution. For example, Gunay (2015), Braione and Scholtes (2016), and
Sampid et al. (2018) employed student-t distribution for return errors to real datasets and found that
GARCH(1, 1)-type models with student-t distribution fit data better than normal distribution.

Motivated by the above studies, this study applies non-linear power transformations to the condi-
tional variance process for the GARCH-X(1, 1) model. The application was carried out for all lags
simultaneously. Therefore, the main contribution of this study is to propose a new class that gener-
alizes the GARCH(1, 1) and GARCH-X(1, 1) models, namely the non-linear GARCH(1, 1) (simply
N-GARCH(1, 1)) and non-linear GARCH-X(1, 1) (simply N-GARCH-X(1, 1)) model, respectively.
Empirically, the performance of the proposed model is tested using real data of the FTSE100 and
SP500 stock indices for a daily period from January 2000 to December 2020, where the model param-
eters are estimated using the ARWM (adaptive random walk metropolis) method from Atchade and
Rosenthal (2005). To our knowledge, this empirical study on the new class of non-linear GARCH-X
models provides the first results in the literature.

2. Methodology

2.1. Type of volatility model

The GARCH model introduced by Bollerslev (1986) is the simplest model of the GARCH-type
class. Many empirical applications mainly use the GARCH model with one lag (i.e., GARCH(1, 1)
model) to formulate conditional variance directly as a function of observables. The performance of
the GARCH(1, 1) model has been proven by Hansen and Lunde (2005), who compared 330 volatility
GARCH models, and by Namugaya et al. (2014), who compared four GARCH(p, q) models.

In the daily period, the GARCH(1, 1) model interprets that today’s variance is a function that
depends on yesterday’s variance and squared returns. By denoting Rt as returns at time t, σt as returns’
conditional volatility at time t, and N as normal distributions, the GARCH(1, 1) model with normal
distribution has an expression as follows: Rt = σtεt, εt ∼ N(0, 1),

σ2
t = ω + αR2

t−1 + βσ2
t−1,

(2.1)
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where the necessary conditions to ensure that σ2
t remains positive are given by ω, α, β > 0 and a

necessary condition for covariance stationarity is α + β < 1.
Engle (2002) extended the GARCH model into GARCH-X by adding high-frequency data as

exogenous components in the conditional variance equation. The high-frequency data illustrate the
intraday volatility of each trading day. Specifically, the GARCH-X(1, 1) model with normal distribu-
tion has the form of:  Rt = σtεt, εt ∼ N (0.1) ,

σ2
t = ω + αR2

t−1 + βσ2
t−1 + γxt−1,

(2.2)

where the following conditions hold:

ω, α, β, γ > 0 and 0 < α + β < 1.

In the above model, variable xt represents the exogenous component.
This study extends the GARCH(1, 1) and GARCH-X(1, 1) models by transforming the conditional

variance using a non-linear power function to make the models more general and allow non-linear
variance to follow the AR(1) process. The GARCH(1, 1) and GARCH-X(1, 1) models, where the
variances are transformed for all lags, are constructed consecutively as follows:

N-GARCH(1, 1) : h
(
σ2

t , λ
)

= ω + αR2
t−1 + βh

(
σ2

t−1, λ
)
. (2.3)

N-GARCH-X(1, 1) : h
(
σ2

t , λ
)

= ω + αR2
t−1 + βh

(
σ2

t−1, λ
)

+ γxt−1, (2.4)

where h(σ2
t , λ) represents the power transformation for variance σ2

t with transformation parameter λ.
By taking h(σ2

t , λ) as a new variable ht, then the model can be rewritten as:

Rt =
√

gtεt, εt ∼ N (0, 1) , (2.5)

where gt = σ2
t (ht, λ), with the variance function is

ht = ω + αR2
t−1 + βht−1 + γxt−1, (2.6)

in which γ = 0 for N-GARCH(1, 1)-type models and γ > 0 for N-GARCH-X(1, 1)-type models.

2.2. Exogenous variable

In fact, empirical studies take realized measures of volatility as an exogenous variable as it is much
more informative on the volatility level than the squared returns rate (Hansen et al., 2012). Realized
measures of volatility are theoretically high-frequency and are non-parametric estimators of variations
in asset value changes when traded frequently (Floros et al., 2020).

The first class of realized measures of volatility includes realized volatility (RV) measures intro-
duced by Andersen et al. (2001), which are constructed as the root of the sum of intraday squared
returns. Suppose that on day t, there is a set of returns Rt,1,Rt,2, . . . ,Rt,m for a certain time range, then
RV is formulated by:

RVt =

√√ m∑
j=1

R2
t, j . (2.7)

In this study, the exogenous component xt in the GARCH-X(1, 1) model takes RV 10 minutes.
According to Liu et al. (2015) and Floros et al. (2020), RV 10 is a “good” estimator as it has high
accuracy and a significant positive impact on daily returns and future volatility.
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Table 1: The three transformation families and their inverses

Transf. ht = h(σ2
t , λ) gt = σ2

t (ht , λ)

TL =

 σ2λ
t , λ > 0

log
(
σ2

t

)
, λ = 0

=

 hλ
−1

t , λ > 0

exp{ht}, λ = 0

Exp. =


exp{λσ2

t } − 1
λ

, λ 6= 0

σ2
t , λ = 0

=


ln (λht + 1)

λ
, λ 6= 0

ht , λ = 0

YJ =


(σ2

t + 1)λ − 1
λ

, λ 6= 0

log
(
σ2

t + 1
)
, λ = 0

=

 (1 + λht)λ
−1
, λ 6= 0

exp{ht} − 1, λ = 0

2.3. Power transformation family

Because this study transforms the variance parameter (σ2
t ), which value is always positive, there

are three non-linear power transformations applied, namely Tukey’s ladder, exponential, and Yeo–
Johnson transformations. Table 1 gives the non-linear transformations for the variable σ2

t and their
inverses.

Manly (1976) proposed an exponential (simply Exp) transformation that allows both positive and
negative response values. The idea is to take the natural exponential of the response variable and
then apply the transformation of Box and Cox (1964). The exponential transformation is useful for
changing a unimodal skew distribution into a normal distribution.

Tukey’s ladder (simply TL) of power transformation introduced by Tukey (1977) is the simplest
power transformation and aims to simplify data analysis. This way changes the asymmetric distribu-
tion so that it becomes normal or nearly-normal and can also help to reduce error variability.

Yeo and Johnson (2000) proposed power transformation that can be used without limitation of the
response variable and is suitable to reduce the distribution skew. For the positive variable, the Yeo–
Johnson (simply YJ) transformation is identical to the Modulus transformation introduced by John
and Draper (1980), thus also equal to Box–Cox transformation if the response variable is susbtituted
with the variable minus one.

2.4. Distributional assumptions

The most widely and commonly used distribution as an initial study is the normal distribution. There-
fore, as a framework for easy initial work, the normal distribution is also considered here. A type of
probability distribution that is similar to the normal distribution is student-t distribution, where the
curve is symmetrically bell-shaped but has thicker tails. The student-t distribution tends to be close to
the normal distribution when the degree of freedom heads towards infinity (in this case ν greater than
or equal to 30), see Ramachandran and Tsokos (2021).

The likelihood function for a normal random variable Y with mean µ and variance φ, denoted as
Y ∼ N(µ, φ), is defined as follows:

L (y | µ, φ) =
1√
2πφ

exp
{
−

(y − µ)2

2φ

}
. (2.8)
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for −∞ < y < ∞, with the log-likelihood function L (y|µ, φ) expressed by:

L (y | µ, φ) = −
1
2

log (2πφ) −
(y − µ)2

2φ
. (2.9)

Meanwhile, the random variable Y that follows a student-t distribution with mean µ, variance φ, and
degree of freedom ν (not required to be an integer), denoted as Y ∼ T (µ, φ, ν), has a likelihood
function expressed by (see, Choi and Yoon (2020)):

L (y | µ, φ, ν) =
Γ ((ν + 1) /2)√
πφ(ν − 2)Γ (ν/2)

(
1 +

(y − µ)2

φ (ν − 2)

)− 1+ν
2

(2.10)

for −∞ < y, µ < ∞, φ > 0, and ν > 2. In the above function, Γ(·) represents the gamma function.
Therefore, the log-likelihood function L (y|µ, φ, ν) is expressed by:

L (y | µ, φ, ν) = log Γ

(
ν + 1

2

)
− log Γ

(
ν

2

)
−

1
2

log (πφ (ν − 2)) −
1 + ν

2
log

(
1 +

(y − µ)2

φ (ν − 2)

)
. (2.11)

2.5. Estimation method

The observed models are estimated using an adaptive method called ARWM and performed in the
MCMC algorithm. According to Van Ravenzwaaij et al. (2018), MCMC is an increasingly popular
method in Bayesian inference when the posterior distribution is difficult to perform via analytic ex-
amination. The MCMC algorithm combines two properties: Markov chain and Monte Carlo. The
idea is to generate a series of random samples that have the “Markov” property so that the stationary
distribution is the same as the estimated posterior distribution and to estimate the distribution prop-
erties by testing random samples using the Monte Carlo approach. Therefore, the MCMC has two
stages, namely generating the Markov chain and estimating the distribution properties (such as mean,
standard deviation, and Bayesian interval) based on the Monte Carlo approach.

The ARWM method proposed by Atchade and Rosenthal (2005) is one of the Markov chain
generation methods, which is an improvement from the random walk metropolis (RWM) method,
the most often used method because it is the simplest. Nugroho (2018) showed empirically that the
ARWM method has high computational and convergence speeds. In summary, the steps of the ARWM
method can be explained as follows.

At iteration n in the MCMC algorithm, the candidate of random sample θ is generated by the
equation:

θ(n) = θ(n−1) +
√

∆(n)z(n), z(n)
∼ N (0, 1) , (2.12)

where ∆(n) is the step width. Bayesian inference uses information from the observation data D given
θ, formally called likelihood, to update the parameter prior state into a posterior one. Formally, the
natural logarithm of the posterior distribution or probability of θ given D, is calculated using Bayes’
rule (see, Yang (2019)):

log p (θ | D) ∝ L (D | θ) + log p (θ) , (2.13)

where L (D|θ) indicates the log-likelihood or log-probability of D given θ, and p(θ) indicates the
prior probability of θ. The symbol ∝ means “proportional to”. The candidate sample θ(n) is accepted
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if (p(θ(n)|D))/p(θ(n−1)|D) > u, for a standard uniformly distributed random variable u. Next, the step
width ∆(n) is going to change adaptively based on the formula (Atchade and Rosenthal, 2005; Andrieu
and Thom, 2008):

∆(n) = ∆(n−1) + ηn

(N
n
− r

)
(2.14)

with the desire optimal acceptance rate r is fixed at 0.234 or 0.44 (Rosenthal, 2011). Here, N repre-
sents the number of accepted candidates after n iterations of the MCMC chain. In other words, N/n
represents the acceptance probability of last candidate. Assuming monotocity on N/n, if N/n − r > 0
then ∆n−1 is probably too small and should be increased while if N/n − r < 0 then ∆n−1 should be de-
creased. To control how quickly the impact of the tuning mechanism decays such that the variations of
{∆n} vanish, the standard approach chooses a positive sequence of real number {ηn} deterministic and
non-increasing. A sequence that satisfies these conditions is ηn = n−δ for some constant 0.5 < δ ≤ 1
(called averaging or damping parameter).

After the Markov chain of parameter θ is constructed, the next step is to calculate descriptive
statistics from random samples as the output of the MCMC. The descriptive statistics include mean,
standard deviation, and Bayesian confidence interval. This study chose the HPD (highest posterior
density) interval as the Bayesian confidence interval following the Chen & Shao approach in Le et al.
(2020) and Nugroho et al. (2021). The 95% HPD interval from the Markov chain with length M is
constructed with the following steps:

Step 1 : Calculate Mcut = [0.05 × M] and Mspan = M − Mcut, where [x] represents the standard
rounding function of x.

Step 2 : Sort the estimated values from the smallest to the largest, i.e. {θ j}
M
j=1, where θ1 ≤ θ2 ≤ · · · ≤

θM .

Step 3 : Find the index j∗ so that θ j∗+Mspan − θ j∗ = min
1≤ j≤Mcut

(θ j+Mspan − θ j).

Step 4 : Determine the 95% HPD interval: (
θ j∗ , θ j∗+Mspan

)
. (2.15)

2.6. Model selection

The goodness-of-fit of the studied models to real data is evaluated through the Akaike information
criterion (AIC). This criterion is adequate for both nested and non-nested models. It should be noted
that the models considered in this study are non-nested, meaning that a model is not a special case
from another model for a certain parameter value. For the statistical model with dimension k (the
number of parameter), the AIC is defined by (see, Portet (2020)):

AIC = 2 (k −L ) , (2.16)

where L represents the maximum value of the log-likelihood function. In principle, given a set of
competing models for the same data, the model with the minimum AIC values indicates the best fit
model.
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Figure 1: Time plots of daily return of all the indices.

3. Applications on real data

This section applies the models and estimation method to real data to empirically analyze the perfor-
mance of sampling method, parameter estimation, and goodness-of-fit of the models.

3.1. The descriptions of observation data

The data used in our investigation are the financial times stock exchange 100 stock indices, also
called the FTSE100, and the standard and poor’s 500, or simply the SP500. Both stock indices were
chosen in this study because according to Chaudhary et al. (2020), both of them are part of the top 10
stock market indices that accounted for 66% of gross domestic product (GDP) as the world economy
reference. Therefore, both stock indices can represent the world economy. Specifically, this study
used the daily stock indices values from January 2000 to December 2020. All data were obtained
from the Oxford-Man Institute’s “realized library” at https://realized.oxford-man.ox.ac.uk/data/.

Figure 1 presents time plots of daily returns of FTSE100 (top) and SP500 (bottom), where both
returns are observed to fluctuate around the mean (red line). This visually interprets that the returns
are stationary, or means that there is no up or down trend during the observation period. This is the
reason why financial studies are more interested in returns than asset prices, because stationary data
make statistical analysis easier.

Meanwhile, Table 2 depicts descriptive statistics for daily returns from each observation dataset.
The average value of each stock index return is close to zero so the formulation of the returns equation
which uses a mean of zero is appropriate. The kurtosis value clearly indicates that both returns are
leptokurtic (heavy tails), a finding found in many empirical studies in the literature. The probabil-
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Table 2: Descriptive statistics

Particulars FTSE100 SP500
Mean –0.0060 0.0065

Standard deviation 1.166 1.128
Kurtosis 10.22 11.33

JB statistics 1.16 × 104 1.52 × 104

Probability of JB 0 0
Observations 5291 5258

ity value of the computed Jarque–Bera (JB) is less than 0.05 in both returns series. This normality
test confirms that the null hypothesis of normality is rejected at the 5% significance level, meaning
that both return series are not normally distributed. For this reason, the considered volatility models
are estimated with a student-t distribution framework, which is a type of heavy-tailed distribution.
Since this study mainly focused on the extension of the GARCH(1, 1) and GARCH-X(1, 1) models to
capture nonlinearity in volatility process, the models can be extensively enhanced in future work by
joining the stylized facts of heavy-tails and skewness.

Construction of log-likelihood functions for models

The log-likelihood functions in Equations (2.9) and (2.11) need to be rewritten for each considered
model. By applying non-linear power transformation for variances on all lags, the NL-GARCH(1, 1)
and NL-GARCH-X(1, 1) models, where return errors follow a normal distribution with a mean of zero
and variance of gt, have the following log-likelihood function:

L (Rt | gt) = −
1
2

log (2πgt) −
R2

t

2gt
, (3.1)

where gt = σ2
t (ht, λ) is given as in Table 1 with the process of ht follows Equation (2.6).

Furthermore, when the return error εt follows student-t distribution with a mean of zero, variance
of gt, and degrees of freedom ν > 2, the log-likelihood functions of the NL-GARCH(1, 1) and NL-
GARCH-X(1, 1) models are given as follows:

L (Rt | gt, ν) = log Γ

(
ν + 1

2

)
− log Γ

(
ν

2

)
−

1
2

log (πgt (ν − 2)) −
1 + ν

2
log

(
1 +

R2
t

gt (ν − 2)

)
. (3.2)

3.2. MCMC implementation

Following the Bayes’ formula in Equation (2.13), a prior distribution needs to be set for each model
parameter. This study specifies a truncated normal distribution with a mean of zero and a variance of
10 for the prior of ω, α, β, λ, γ and an exponential distribution with hyper-parameter 0.01 for the prior
of ν according to the practical standards (see, Nugroho et al. (2021)). Then, the prior distribution is
combined with the likelihood function to form a posterior distribution.

To run the MCMC algorithm, the initial values for the parameters were set as follows:

ω(0) = 0.01, α(0) = 0.2, β(0) = 0.7, γ(0) = 0.1, λ(0) = 0.5, ν(0) = 10.

The number of MCMC iterations was 6000, where the first 1000 iterations were discarded as burn-in
to eliminate the non-stationary caused by the arbitrary selection of the initial values. In the ARWM
method, the initial step width was chosen to be 0.005. By setting the optimal acceptance rate r = 0.44
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Figure 2: Trace plots of the MCMC chain for the parameters of ST-GARCHt-X(1, 1) model generated by the
ARWM method: (a) FTSE100 and (b) SP500.

and damping parameter δ = 0.66, our experimental results demonstrate that the optimal acceptance
rate has been achieved by all parameters about 0.44. The only exception is the parameter ω which
achieves about 0.234.

For example, the MCMC stages to estimate the NL-GARCH-X(1, 1) model with student-t dis-
tribution, or simply the N-GARCHt-X(1, 1), which is applied to data returns R = {Rt}

T
t=1 and X =

{RVt}
T
t=1, are summarized as follows.

Stage 1 : Generate Markov chains from the posterior probability by using the ARWM method.

1. Draw ω|α, β, γ, λ, ν,R,X.
2. Draw α|ω, β, γ, λ, ν,R,X.
3. Draw β|ω, α, γ, λ, ν,R,X.
4. Draw γ|ω, α, β, λ, ν,R,X.
5. Draw λ|ω, α, β, γ, ν,R,X.
6. Draw ν|ω, α, β, γ, λ,R,X.

Stage 2 : Calculate statistics.
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Table 3: Mean and standar deviation (in bracket) of the parameter estimates on GARCH(1, 1)-type models
construction process for FTSE100 index

Parameter Model
GARCH Exp-GARCH TL-GARCH YJ-GARCH

ω 0.0191 (0.0028) 0.0175 (0.0035) 0.0205 (0.0059) 0.0179 (0.0034)
α 0.1152 (0.0082) 0.1205 (0.0121) 0.1146 (0.0102) 0.1194 (0.0114)
β 0.8708 (0.0082) 0.8713 (0.0126) 0.8713 (0.0087) 0.8720 (0.0117)
λ 0.0207 (0.0214) 0.9788 (0.0563) 1.0436 (0.0624)

GARCHt Exp-GARCHt TL-GARCHt YJ-GARCHt
ω 0.0165 (0.0031) 0.0158 (0.0034) 0.0187 (0.0051) 0.0163 (0.0032)
α 0.1094 (0.0092) 0.1062 (0.0120) 0.1032 (0.0098) 0.1029 (0.0100)
β 0.8791 (0.0097) 0.8829 (0.0119) 0.8819 (0.0094) 0.8832 (0.0095)
λ 0.0060 (0.0236) 0.9632 (0.0528) 0.9626 (0.0837)
ν 9.46 (1.21) 9.53 (1.22) 9.51 (1.23) 9.47 (1.18)

GARCH-X Exp-GARCH-X TL-GARCH-X YJ-GARCH-X
ω 0.0011 (0.0011) 0.0009 (0.0009) 0.0221 (0.0135) 0.0008 (0.0008)
α 0.1169 (0.0106) 0.1081 (0.0120) 0.0074 (0.0048) 0.0286 (0.0092)
β 0.8057 (0.0204) 0.7966 (0.0225) 0.6948 (0.0198) 0.7161 (0.0283)
γ 0.0905 (0.0167) 0.1028 (0.0175) 0.5140 (0.0286) 0.1843 (0.0229)
λ −0.0387 (0.0105) 0.3006 (0.0202) 0.1390 (0.0808)

GARCHt-X Exp-GARCHt-X TL-GARCHt-X YJ-GARCHt-X
ω 0.0012 (0.0012) 0.0012 (0.0013) 0.0253 (0.0146) 0.0009 (0.0009)
α 0.1077 (0.0103) 0.0976 (0.0103) 0.0052 (0.0038) 0.0294 (0.0106)
β 0.8275 (0.0132) 0.8257 (0.0152) 0.7039 (0.0222) 0.7535 (0.0199)
γ 0.0758 (0.0113) 0.0821 (0.0137) 0.2899 (0.0289) 0.1580 (0.0175)
λ −0.0365 (0.0241) 0.4978 (0.0315) 0.1802 (0.0978)
ν 10.43 (1.44) 10.66 (1.51) 12.55 (2.02) 11.31 (1.77)

3.3. Parameter estimates

Based on the results of running the MCMC algorithm, the remaining 5000 iterations were used to
calculate the posterior mean, standard deviation, and 95% HPD interval. For example, Figure 2
displays the plot of the estimated values (Markov chain) for parameters in the GARCH-X(1, 1) model
with student-t distribution, where the variance transformed by the TL function follows the AR(1)
process. Visually, the results show that the ARWM method is very efficient for estimating parameters
α and ν, but less efficient for other parameters. Even so, the stationarity for the estimated values of
ω, β, γ, and λ are considered good enough. Moreover, the convergence of algorithm were checked
by using the integrated autocorrelation time (IACT). This IACT value, denoted by τ, is estimated by
using Sokal’s adaptive truncated periodogram estimator (see, Lampart and Sbalzarini (2012)) with the
results as follows:

FTSE100 : τ (ω) = 148.7, τ (α) = 34.3, τ (β) = 115.5, τ (γ) = 125.4,
τ(λ) = 136.8, τ(ν) = 6.6,

SP500 : τ(ω) = 89.0, τ(α) = 9.3, τ(β) = 137.9, τ(γ) = 141.3,
τ(λ) = 72.6, τ(ν) = 7.3.

The results indicate that the ARWM sampling method in MCMC provides quite efficiency and rea-
sonably good mixing performance, which yield quite fast convergence. Therefore, it recommends to
make reliable inferences on the interest parameters for the next analysis.

First, the effect of the non-linear power transformation on the parameters in basic model is ana-
lyzed. This is seen from the mean and standard deviation of the estimates over the MCMC algorithm
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Table 4: Mean and standar deviation (in bracket) of the parameter estimates on GARCH(1, 1)-type models
construction process for SP500 index

Parameter Model
GARCH Exp-GARCH TL-GARCH YJ-GARCH

ω 0.0152 (0.0023) 0.0152 (0.0021) 0.0135 (0.0027) 0.0145 (0.0018)
α 0.1188 (0.0101) 0.1274 (0.0094) 0.1269 (0.0087) 0.1240 (0.0078)
β 0.8701 (0.0102) 0.8658 (0.0090) 0.8666 (0.0079) 0.8701 (0.0074)
λ 0.0212 (0.0206) 1.0306 (0.0397) 1.0581 (0.0552)

GARCHt Exp-GARCHt TL-GARCHt YJ-GARCHt
ω 0.0090 (0.0019) 0.0093 (0.0018) 0.0097 (0.0025) 0.0093 (0.0020)
α 0.1161 (0.0097) 0.1174 (0.0088) 0.1149 (0.0096) 0.1157 (0.0111)
β 0.8808 (0.0097) 0.8794 (0.0086) 0.8814 (0.0093) 0.8797 (0.0103)
λ −0.0012 (0.0167) 0.9861 (0.0395) 0.9579 (0.0622)
ν 6.68 (0.55) 6.65 (0.58) 6.64 (0.59) 6.58 (0.57)

GARCH-X Exp-GARCH-X TL-GARCH-X YJ-GARCH-X
ω 0.0005 (0.0005) 0.0005 (0.0006) 0.0168 (0.0117) 0.0005 (0.0006)
α 0.1171 (0.0099) 0.1082 (0.0098) 0.0016 (0.0015) 0.0090 (0.0039)
β 0.7906 (0.0178) 0.7863 (0.0165) 0.6130 (0.0337) 0.5864 (0.0420)
γ 0.1042 (0.0145) 0.1116 (0.0138) 0.4154 (0.0449) 0.2929 (0.0333)
λ −0.0359 (0.0082) 0.5115 (0.0237) 0.0121 (0.0115)

GARCHt-X Exp-GARCHt-X TL-GARCHt-X YJ-GARCHt-X
ω 0.0007 (0.0007) 0.0006 (0.0006) 0.0173 (0.0150) 0.0006 (0.0006)
α 0.1217 (0.0128) 0.1168 (0.0114) 0.0015 (0.0015) 0.0093 (0.0043)
β 0.8252 (0.0192) 0.8207 (0.0162) 0.6299 (0.0405) 0.5790 (0.0396)
γ 0.0665 (0.0146) 0.0724 (0.0132) 0.3988 (0.0388) 0.3029 (0.0322)
λ −0.0260 (0.0112) 0.4874 (0.0234) 0.0133 (0.0153)
ν 6.97 (0.65) 7.07 (0.69) 8.49 (0.96) 7.50 (0.87)

presented in Tables 3 and 4. From the estimated parameter values, it is necessary to see the difference
between the results in the basic model and the transformation models. The difference is calculated
based on the relative difference with the formula |(θbasic − θtransf)/θbasic|×100% for the parameter θ.
Intuitively, it is determined that if the relative difference is less than 25%, then the difference is small
and the transformation is considered not to affect parameter θ. Due to space limitation, the results for
the relative difference are not presented.

The comparison between the basic GARCH(1, 1) model and the Exp-transformed models gen-
erally shows that the estimated values have small differences, which are less than 9% for the Exp-
GARCH(1, 1) model and less than 19% for the Exp-GARCH-X(1, 1) model on all parameters. For
the TL-transformed models, the estimation differences are small (less than 14%) on all parameters for
the TL-GARCH(1, 1) model but large (greater than 25%) for the TL-GARCH-X(1, 1) model, except
for parameters β and ν. Finally, compared to the YJ-transformed models, the estimation differences
are small (less than 7%) on all parameters for the YJ-GARCH(1, 1) model but large (greater than
25%) for the YJ-GARCH-X(1, 1) model, except for parameters β (FTSE100 only) and ν. The results
from Tables 3 and 4 conclude that the non-linear power transformation fairly affects the parameters of
the GARCH-X(1, 1) model, except for parameters β and ν.

The second analysis is conducted on the significance of the transformation parameter λ. It is
investigated whether the HPD interval contained the basic value as described in the previous section,
namely λ = 0 for the Exp transformation and λ = 1 for the TL and YJ transformations. Table 5
presents the 95% HPD interval for parameter λ of all transformed models.

Table 5 shows that the three transformations are not significant in the GARCH(1, 1)-type models.
This is indicated by the 95% HPD intervals containing the value of 0 for the exp-transformed model
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Table 5: HPD intervals at 95% confidence level for the transformation parameter λ in the non-linear models

Model FTSE100 SP500
Normal Student-t Normal Student-t

Exp-GARCH (−0.0207,0.0636) (−0.0373,0.0500) (−0.0163,0.0613) (−0.0283,0.0327)
TL-GARCH (0.8627,1.0734) (0.8434,1.0636) (0.9518,1.1032) (0.9097,1.0631)
YJ-GARCH (0.9311,1.1674) (0.7956,1.1171) (0.9463,1.1603) (0.8407,1.0931)

Exp-GARCH-X (–0.0554,–0.0174) (–0.0591,–0.0087) (–0.0496,–0.0200) (–0.0432,–0.0039)
TL-GARCH-X (0.4565,0.5667) (0.4414,0.5574) (0.3353,0.5008) (0.4402,0.5301)
YJ-GARCH-X (0.0001,0.2884) (0.0037,0.3658) (0.2428,0.3649) (0.0001,0.0390)

Table 6: Comparison of alternative models

Model
FTSE100 SP500

Normal Student-t Normal Student-t
AIC Rank AIC Rank AIC Rank AIC Rank

GARCH 14408.77 5 14308.11 5 13561.66 8 13309.78 5
Exp-GARCH 14410.20 7 14311.02 8 13561.62 7 13312.54 6
TL-GARCH 14410.92 8 14310.05 6 13561.39 6 13312.66 7
YJ-GARCH 14409.96 6 14310.13 7 13560.44 5 13312.82 8
GARCH-X 14343.64 4 14263.59 4 13446.41 4 13261.66 4

Exp-GARCH-X 14338.31 3 14260.55 3 13438.07 3 13258.47 3
TL-GARCH-X 14190.14 1 14135.01 1 13132.21 1 12997.34 1
YJ-GARCH-X 14280.30 2 14218.01 2 13299.23 2 13165.28 2

and the value of 1 for the TL- and YJ-transformed models. However, when the non-linear power
transformation is applied to the GARCH-X(1, 1) model, the result is significant. This is indicated by
intervals that exclude basic values. These results show that the presence of RV component greatly
affects the significance of non-linear power transformation. Furthermore, these results indicate that
the conditional variance process in the GARCH-X(1, 1) model needs to be non-linearly transformed.

3.4. Model evaluation

To choose a model that provides the best data fit, the AIC values from the competing models are
observed in Table 6. It is observed that models with smaller AIC values indicate better models.

When the transformation is applied to the GARCH(1, 1)-type models, the basic GARCH(1, 1)
model provides a better fit. There is an exception to the SP500 data fit using the normal distribution,
where the transformation models are superior with extremely small AIC differences. In contrast, when
the transformation is applied to the GARCH-X(1, 1)-type models, all transformation models provide
a better fit than the basic model in all data cases and distribution specifications. These results are
consistent with the significance of the transformation parameters obtained in the previous section. In
this case, the TL-transformed model is the best, followed by the YJ- and exp-transformed model.

Furthermore, when the results of the two distributions are compared, the model with the student-t
distribution is superior to the normal distribution in all models. Overall, the AIC chooses the TL-
GARCH-X(1, 1) model with student-t distribution as the best fit model.

3.5. Value-at-risk estimation

The most popular market risk measure is value-at-risk (VaR), which quantities the possible financial
losses for a portfolio, investment, or entity over a specified time period and for a given confidence
level. Since volatility estimation is a key input to VaR (value-at-risk) models, the selection of the
appropriate volatility model is one of the most important factors in determining the accuracy of VaR.
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Table 7: Estimation and testing windows in dates

t Estimation window Testing window
Start t + WE − 1 End VaR(Obs.) t + WE VaR forecast

1 4/1/2000 5039 31/12/2019 VaR(1) 5040 VaR(2/1/2020)
2 5/1/2000 5040 2/1/2020 VaR(2) 5041 VaR(3/1/2020)
...

...
...

...
...

...
...

252 29/12/2000 5290 30/12/2020 VaR(252) 5291 VaR(31/12/2020)

Table 8: Results of backtesting VaR for the CCI test at the 5% risk level using FTSE100 and SP500

Model
FTSE100 SP500

Normal Student-t Normal Student-t
LR p-value LR p-value LR p-value LR p-value

GARCH 0.61 0.44 0.61 0.44 0.009 0.93 0.03 0.86
Exp-GARCH 0.61 0.44 0.61 0.44 0.002 0.97 0.03 0.86
TL-GARCH 0.61 0.44 0.61 0.44 0.002 0.97 0.002 0.97
YJ-GARCH 0.61 0.44 0.61 0.44 0.009 0.93 0.002 0.97
GARCH-X 0.23 0.63 0.23 0.63 1.95 0.16 0.03 0.86

Exp-GARCH-X 0.40 0.53 0.40 0.53 1.95 0.16 0.03 0.86
TL-GARCH-X 0.12 0.74 0.04 0.84 1.95 0.16 2.23 0.14
YJ-GARCH-X 0.12 0.74 0.04 0.84 2.23 0.14 0.10 0.76

According to the distribution of errors, when the mean return is zero, the 1-day horizon VaR for
an individual asset with probability p% can be calculated as follows (Xu, 2017):

under the normal distribution: VaRp = Zpσ̂t+1,

under the student-t distribution: VaRp,ν =
√
ν−1 (ν − 2)T −1

ν,p σ̂t+1,
(3.3)

where Zp denotes the p-quantile of a standard normal distribution and T −1
ν,p represents the p-quantile

of a student-t distribution. When implementing VaR predictions from a GARCH-X type model, one
needs to calculate σ̂t+1 given the last volatility estimate σ̂t and the parameter estimate vector.

In order to measure the accuracy of VaR estimates, the backtesting is applied to the VaR forecast
for to the year 2020. We estimate each model of VaR using the estimation window size, WE , of 5039
trading days starting from January 4th, 2000 onwards with the beginning of the estimation period
is on day t. The testing window for the year 2020 starts from its first day January 2nd, 2020 to its
last day December 31st, 2020, having a total of 252 observations. Every observation in the testing
window corresponds to a day for which the VaR is calculated using the previous 5039 trading days.
The calculation procedure of estimation and testing windows is shown in Table 7.

In this study, the conditional coverage independence (CCI) test of Christoffersen (1998) is used to
evaluate the accuracy of VaR models at the daily horizon. This test, which seeks to determine whether
the VaR breaches are independent from one period to the next or not, is one of the most well-known
backtesting tests. The Christoffersen’s CCI test has the advantage that it respects the conditionality in
the volatility forecasts. Table 8 presents the outputs for the Christoffersen’s CCI test at the significance
level of 5%. As a result, in any case, all VaR models passes the Christoffersen’s CCI test, indicated by
likelihood ratio (LR) less than < 5.99 (p-value > 0.5), and therefore the accuracy of all VaR models
is accepted. In case of adopting FTSE100 index data, the best performing models with the lowest LR
value are the TL-GARCH-X and YJ-GARCH-X models in each distribution specification. Differents
results are given by the adoption of SP500 index, which show that the best VaR estimate is provided by
Exp-GARCH and TL-GARCH in the normal distribution case and by TL-GARCH and YJ-GARCH
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in the student-t distribution case.

4. Conclusions and future works

This study proposed an extension of the GARCH(1, 1) and GARCH-X(1, 1) models by applying non-
linear power transformation for the variance equation, namely non-linear transformation of variance
following the AR(1) process. These non-linear power transformations include exponential, Tukey’s
ladder, and Yeo–Johnson transformations. In this study, the return errors in the model were assumed
to follow normal and student-t distributions. The data used for empirical analysis were FTSE100 and
SP500 stock indices data in a daily period from 2000 to 2020. The method used to estimate the model
parameters was the ARWM method in the MCMC algorithm.

The empirical results showed that the non-linear power transformation greatly affects the parame-
ter estimate of the ARCH components as well as the exogenous variable component. Significantly, the
non-linear power transformation needs to be applied to the GARCH-X(1, 1) model. In particular, the
AIC provides evidence that the GARCH-X(1, 1) model with student-t distribution, where the variance
equation is transformed by Tukey’s ladder, provides the best fit. Therefore, this study found a more
general GARCH-X(1, 1) model which potentially provides a better data fit than the basic model.

Furthermore, this study evaluates VaR estimates produced by eight GARCH-type models, made
under symmetric (normal dan student-t) error distributions. In the Christoffersen’s independence test,
the results for VaR estimation with the 95% confidence interval support all models and confirm that
the univariate GARCH VaR models allowing a non-linear function of variance to follow an AR(1)
process are among the best performing models.

For the next study, the model can be developed by applying non-linear power transformation to a
realized GARCH model as in Hansen et al. (2012) and Hansen and Huang (2016). It would be a good
idea to increase the number of models and evaluate whether an asymmetric GARCH model and a
skewed student-t distribution would produce better results than the models and distributions explored
in this study.
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