• Title/Summary/Keyword: AR Precipitation

Search Result 67, Processing Time 0.026 seconds

Effects of Coating Conditions on the Thickness and Morphology of Alumina- or Carbon-Coated Layers on SiC Whiskers (알루미나 또는 카본 코팅 SiC 휘스커의 코팅층 두께 및 형상에 미치는 코팅조건의 영향)

  • 배인경;장병국;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.513-520
    • /
    • 1999
  • Alumina-coated SiC whiskers wee prepared by the calcination (1150$^{\circ}C$, 1h, Ar) of the alumina hydrate layer which was precipitated homogeneously on whisker surface from a solution of Al2(SO4)3 and urea as a precipitant. In addition carbon coated SiC whiskers were prepared by the pyrolysis (1000$^{\circ}C$, 4h Ar) of phenolic resin coated whisker. The effects of coating conditions on the thickness and morphology of the coated layers were examined by SEM and TEM. It was found that Al2O3-coating layers become thinner and more uniform with decreasing the Al2(SO4)3 concentration. Thin (0.075-0.1$\mu\textrm{m}$) and uniformly alumina-coating layers were obtained at the Al2(SO4)3 concentration 0.010mol/l. On the other han carbon-coating layers were uniform but very thin (5-16 nm) in thickness. For thicker carbon-coating layers ethanol as a disperse medium was found to be more efficient compared tousing acetone.

  • PDF

Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model (SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가)

  • Ahn, So Ra;Park, Geun Ae;Jang, Cheol Hee;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.569-583
    • /
    • 2013
  • This study is to evaluate the future climate change impact on hydrological components in the Seolmacheon ($8.54km^2$) mixed forest catchment located in the northwest of South Korea using SWAT (Soil and Water Assessment Tool) model. To reduce the uncertainty, the model was spatially calibrated (2007~2008) and validated (2009~2010) using daily observed streamflow, evapotranspiration, and soil moisture data. Hydrological predicted values matched well with the observed values by showing coefficient of determination ($R^2$) from 0.74 to 0.91 for streamflow, from 0.56 to 0.71 for evapotranspiration, and from 0.45 to 0.71 for soil moisture. The HadGEM3-RA future weather data of Representative Concentration pathway (RCP) 4.5 and 8.5 scenarios of the IPCC (Intergovernmental Panel on Climate Change) AR5 (Assessment Report 5) were adopted for future assessment after bias correction of ground measured data. The future changes in annual temperature and precipitation showed an upward tendency from $0.9^{\circ}C$ to $4.2^{\circ}C$ and from 7.9% to 20.4% respectively. The future streamflow showed an increase from 0.6% to 15.7%, but runoff ratio showed a decrease from 3.8% to 5.4%. The future predicted evapotranspiration about precipitation increased from 4.1% to 6.8%, and the future soil moisture decreased from 4.3% to 5.5%.

Effects of Thermal Treatment Conditions on the Powder Characteristics of Uranium Oxide in HTGR Fuel Preparation (고온가스로용 핵연료 제조에서 열처리 조건이 우라늄산화물 입자 특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • The effects of thermal treatment conditions on ADU (ammonium diuranate) prepared by SOL-GEL method, so-called GSP (Gel supported precipitation) process, were investigated for $UO_2$ kernel preparation. In this study, ADU compound particles were calcined to $UO_3$ particles in air and Ar atmospheres, and these $UO_3$ particles were reduced and sintered in 4%-$H_2$/Ar. During the thermal calcining treatment in air, ADU compound was slightly decomposed, and then converted to $UO_3$ phases at $500^{\circ}C$. At $600^{\circ}C$, the $U_3O_8$ phase appeared together with $UO_3$. After sintering of theses particles, the uranium oxide phases were reduced to a stoichiometric $UO_2$. As a result of the calcining treatment in Ar, more reduced-form of uranium oxide was observed than that treated in air atmosphere by XRD analysis. The final phases of these particles were estimated as a mixture of $U_3O_7$ and $U_4O_9$.

Prediction of future potential hydropower in Asia based on AR5 climate scenarios (AR5 시나리오 기반 미래 아시아 수력 발전 가능량 전망)

  • Kim, Seon-Ho;Shin, Hong-Jun;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.70-70
    • /
    • 2020
  • 기후변화 대응을 위해 파리기후협약에서는 온실가스 배출량 감축을 위한 구체적인 목표를 제시하였다. 에너지 분야는 온실가스가 가장 많이 배출되는 분야 중 하나이며, 온실가스 감축 방안으로 신재생 에너지에 대한 관심이 증가하고 있다. 특히 수력에너지는 신재생 에너지 중 가장 현실적이고 많이 활용되는 에너지원으로 각광받고 있다. 아시아 지역은 개발도상국이 다수 위치하고 있고 미개발된 잠재 수력에너지가 풍부한 지역으로 국내 기업의 진출 가능성이 높은 지역이다. 수력에너지 개발을 위해서는 수력 발전 가능량 평가가 필수적이며, 수력 발전 가능량은 기후, 수문조건에 민감하게 반응하기 때문에 기후변화에 따른 수력 발전 가능량의 변동 가능성이 있다. 본 연구에서는 아시아 지역에 대한 AR5 기후변화 시나리오 기반 수력 발전 가능량을 전망하고 분석하고자 하였다. 수력 발전 가능량 산정을 위한 수문 자료 생성은 지표수문해석 모형 VIC (Variable Infiltration Capacity)를 이용하였으며, 모형 입력 자료로 APHRODITE (Asian Precipitation -Highly Resolved Observational Data Integration Towards Evaluation of water resources) 기상 자료, USGS (U.S. Geological Survey) 수치지형도, FAO (Food and Agriculture Organization) 토양도, NCC (Norwegian Climate Centre) NorESM 기후변화 시나리오를 활용하였다. 분석결과 수력 발전 가능량은 과거 및 미래 기간에 동남아시아, 남아시아 지역에 풍부한 것으로 나타났다. 동남아시아는 유출량이 풍부하며, 남아시아는 유역별 낙차가 크기 때문에 수력 발전 가능량이 풍부한 것으로 나타났다. 따라서 동남아시아 지역의 수력 발전 가능량이 남아시아에 비해 기후변화의 영향을 크게 받는 것으로 나타났다. 또한 미래 기후변화로 인해 유출량의 변동 폭이 더욱 넓어져 발전 효율이 감소하는 것으로 나타나 수력발전의 안정성이 감소하였다. 본 연구는 아시아 지역의 수력 발전 가능량을 산정하고 특징을 분석하였다는 점에서 의미가 있다.

  • PDF

Effects of Pre-Aging Treatment on the Corrosion Resistance of Low Temperature Plasma Nitrocarburized AISI 630 Martensitic Precipitation Hardening Stainless Steel (저온 플라즈마 침질탄화처리된 마르텐사이트계 석출경화형 스테인리스강의 내식성에 미치는 시효 전처리의 영향)

  • Lee, Insup;Lee, Chun-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.2
    • /
    • pp.43-52
    • /
    • 2020
  • Various aging treatments were conducted on AISI 630 martensitic precipitation hardening stainless steel in order to optimize aging condition. Aging treatment was carried out in the vacuum chamber of Ar gas with changing aging temperature from 380℃ to 430℃ and aging time from 2h to 8h at 400℃. After obtaining the optimized aging condition, several nitrocarburizing treatments were done without and with the aging treatment. Nitrocarburizing was performed on the samples with a gas mixture of H2, N2 and CH4 for 15 h at vacuum pressure of 4.0 Torr and discharge voltage of 400V. The corrosion resistance was improved noticeably by combined process of aging and nitrocarburizing treatment, which is attributed to higher chromium and nitrogen content in the passive layer, as confirmed by XPS analysis. The optimized condition is finalized as, 4h aging at 400℃ and then subsequent nitrocarburizing at 400℃ with 25% nitrogen and 4% methane gas for 15h at vacuum pressure of 4.0 Torr and discharge voltage of 400V, resulting in the surface hardness of around 1300 HV0.05 and α'N layer thickness of around 11 ㎛ respectively.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

Application of SWAT Model for Simulating Runoff and Water Quality Considering Climate Change (기후변화에 따른 미래 유출 및 수질 모의를 위한 SWAT 모형의 적용)

  • Chung, Eun-Sung;Kim, Sang Ug;Kim, Hyeong Bae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.9-16
    • /
    • 2016
  • In the face of increasing impact of climate change due to human activities, there has been an urgent need to resolve the problem in water resources planning management and environmental engineering. Therefore SWAT model was used to identify the impacts and change in hydrological cycle and environmental aspect. The most important step for the development of SWAT model is calibration procedure. Therefore, SWAT-CUP automatic calibration module was used to find some optimal parameters in SWAT model. After calibration in the cheongmicheon basin, SWAT model is used for the projected precipitation and temperature of RCP 4.5 and 8.5 climate change scenarios in AR5. The quantity and quality using SWAT model from 2014 to 2100 were identified. Finally, this study can provide the reasonable finding on impact by climate change.

  • PDF

Enhancement of Surface Hardness and Corrosion Resistance of AISI 310 Austenitic Stainless Steel by Low Temperature Plasma Carburizing Treatment

  • Lee, Insup
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.4
    • /
    • pp.272-276
    • /
    • 2017
  • The response of AISI 310 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. This grade of stainless steel shows better corrosion resistance and high temperature oxidation resistance due to its high chromium and nickel content. In this experiment, plasma carburizing was performed on AISI 310 stainless steel in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-Ar-CH_4$ gas mixtures. The working pressure was 4 Torr (533Pa approx.) and the applied voltage was 600 V during the plasma carburizing treatment. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. The phase of carburized layer formed on the surface was confirmed by X-ray diffraction. The resultant carburized layer was found to be precipitation free and resulted in significantly improved hardness and corrosion resistance.

Development of index for flood risk assessment on national scale and future outlook (전국 단위 홍수위험도 평가를 위한 지수 개발과 미래 전망)

  • Kim, Daeho;Kim, Young-Oh;Jee, Hee Won;Kang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.323-336
    • /
    • 2020
  • Owing to climate change, the annual precipitation in Korea has increased since the 20th century, and it is projected to continue increasing in the future. This trend of increasing precipitation will raise the possibility of floods; hence, it is necessary to establish national adaptation plans for floods, based on a reasonable flood risk assessment. Therefore, this study focuses on developing a framework that can assess the flood risk across the country, as well as computing the flood risk index (FRI). The framework, which is based on IPCC AR5, is established as a combination of three indicators: hazard, exposure, and capacity. A data-based approach was used, and the weights of each component were assigned to improve the validity of the FRI. A Spearman correlation analysis between the FRI and flood damage verified that the index was capable of assessing potential flood damage. When predicting scenarios for future assessment using the HadGEM3-RA based on RCP 4.5 and 8.5, the flood risk tends to be lower in the early and mid-21st century, and it becomes higher at the end of the 21st century as compared with the present.