• Title/Summary/Keyword: AR 영상

Search Result 282, Processing Time 0.026 seconds

Design of CV-based Realtime Vision Analysis System for Effective AR Vision Control (효율적인 AR 영상 제어를 위한 CV 기반 실시간 영상 분석 시스템 개발)

  • Jung, Sung-Mo;Song, Jae-Gu;Lim, Ji-Hoon;Kim, Seok-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.172-175
    • /
    • 2010
  • 최근 스마트폰 기반의 AR(Augmented Reality) 기술이 이슈화됨에 따라 센서 기반의 AR 콘텐츠들이 빠르게 등장하고 있다. 그러나 센서 기반의 AR 기술인 P-AR(Pseudo AR)은 본질적인 AR이 구현되지 못하는 현실의 대안으로 사용되고 있으며, 실제 영상제어를 통한 AR 기술인 V-AR(Vision AR)은 기술개발이 진행 중에 있다. 이러한 예로 ARToolkit 등 AR을 제어할 수 있는 툴들이 개발 진행 중인데, 센서를 통해 이벤트를 발생시킬 수 있는 P-AR 기술에 반해 V-AR은 영상 자체에서 이벤트를 제어해야 하므로 상대적으로 구현이 어렵기 때문이다. V-AR에서 영상을 제어하기 위해서는 기본적으로 영상에서 잡음 제거, 특정객체 인식, 객체 분석 등이 요구된다. 따라서 본 논문에서는 향후 다가올 V-AR 기술에 대비하여 영상에서 배경 제거, 특정객체 인식, 객체 분석 등 효율적인 AR 영상제어를 할 수 있는 CV 기반 실시간 영상 분석 시스템의 프로토타입을 개발하였다.

  • PDF

A Study for Supporting a Intelligent AR in a SIP-based Video Communication (SIP기반 영상통화에서 지능형AR 융합 연구)

  • Jang, Sung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.7-8
    • /
    • 2019
  • 본 논문에서는 SIP프로토콜에 기반한 영상통화에서 지능형 AR기법을 지원하기 위한 방법에 대해서 서술 한다. 기존의 영상통화에서는 주위에 사물을 실시간 촬영하여, 바로 보낼수 있는 기능이 없었다. 휴대폰에서 AR기능은 주로 위치 서비스에 기반한 길찾기나 건물 내부의 모습을 자동으로 보여주는 용도로 많이 사용되었다. 본 연구에서는 지능형 AR을 이용하여 SIP기반 휴대폰 영상통화 도중 상대방에서 필요한 텍스트나 이미지를 자동으로 전달할 수 있는 방법을 제시함으로써, 사용자 휴대폰의 편의성을 높이고자 한다.

A Study of AR Image Synthesis Technology Using Wavelet Transform in Digital Video (웨이블릿을 사용한 디지털 동영상의 AR 영상 합성 기법)

  • 김혜경;김용균;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.577-579
    • /
    • 2001
  • 본 논문에서는 웨이블릿 변환 기법으로 키프레임을 분석하여 객체 영역을 추출함과 동시에 가상의 객체 영상을 현실감있게 합성하는 기술에 대하여 연구하였다. 가상의 객체 영상이나 실물체 영상을 비디오 영상내에 삽입하여 좀 더 현실감있는 새로운 동영상 비디오 데이터를 제작하는 데 초점을 맞추어 연구를 진행하였다. 웨이블릿 변환이 새로운 영상을 재구성하는데 커다란 기여를 하였으며 본 논문에서 제시한 AR 영상 합성 기법은 동영상 데이터를 합성하는데 사용자가 원하는 지점에 정확하게 영상의 특성정보를 충분히 잘 살린 새로운 방법의 시도였다. 또한, 영상의 캘리브 레이션 방법을 거치지 않고 비디오 영상의 회전행렬과 위치성분을 계산하여 매핑된 가상의 객체 영상을 영상 보간법을 적용하여 직접 가사의 객체 영상을 비디오 객체 영상을 비디오 영상열에 삽입한다. 제시한 영상 합성 기법은 가상의 객체 영상이 디지털 동영상내에 삽입되었을 때 가장 큰 문제점인 떨림 현상과 부조화 현상이 제거되었다.

  • PDF

A study on the effect of introducing EBS AR production system on content (EBS AR 실감영상 제작 시스템 도입이 콘텐츠에 끼친 영향에 대한 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.711-719
    • /
    • 2021
  • EBS has been producing numerous educational contents with traditional virtual studio production systems since the early 2000s and applied AR video production system in October 2020, twenty-years after. Although the basic concept of synthesizing graphic elements and actual image in real time by tracking camera movement and lens information is similar to the previous one but the newly applied AR video production system contains some of advanced technologies that are improved over the previous ones. Marker tracking technology that enables camera movement free and position tracking has been applied that can track the location stably, and the operating software has been applied with Unreal Engine, one of the representative graphic engines used in computer game production, therefore the system's rendering burden has been reduced, enabling high-quality and real-time graphic effects. This system is installed on a crane camera that is mainly used in a crane shot at the live broadcasting studio and applied for live broadcasting programs for children and some of the videos such as program introductions and quiz events that used to be expressed in 2D graphics were converted to 3D AR videos which has been enhanced. This paper covers the effect of introduction and application of the AR video production system on EBS content production and the future development direction and possibility.

Extended Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequence (동영상에서의 확장된 시공간 적응적 Auto-regressive 모델의 연구)

  • Doo, Seok-Joo;Kang, Moon-Gi
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.54-59
    • /
    • 1999
  • In this paper, a generalized auto-regressive(AR) model is proposed for linear prediction based on adaptive spatio-temporal support region(ASTSR). The conventional AR model suffers from the drawback that the prediction error increases in the edge region because the rectangular support region of the edge does not satisfy the stationary assumption. Thus, the proposed approach puts an emphasis on the formulation of a spatio-temporally adaptive support region for the AR model, called ASTSR. The ASTSR consists of two parts: the adaptive spatial support region(ASSR) connected with edges and the adaptive temporal support region(ATSR) related to temporal discontinuities. The AR model based on ASTSR not only produces more accurate model parameters but also reduces the computational complexity in the motion picture restoration.

  • PDF

A Study of AR Image Registration Algorithm For Augmentation Video System (증강 비디오 시스템을 위한 AR 영상 Registration 알고리즘 연구)

  • 김혜경;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.454-456
    • /
    • 2001
  • 본 논문에서는 비디오 영상열 내에 컴퓨터가 생성한 가상의 3D 영상을 이음새 없이 추가하기 위한 문제에 초점을 맞추고 있다. 2단계의 견고한 통계적인 메소드는 추적된 커브들의 모델-영상 대응점으로부터 보다 정확한 자세를 평가하기 위하여 자세 계산을 위해 사용되었다. 또한, 관점의 정확성 향상을 위하여 두 개의 연속하는 영상들간에 매치될 수 있는 핵심점을 카메라 움직임에 대한 상관관계 함수로 사용하여 매칭 에러와 reprojection 에러를 포함한 비용함수를 최소화함에 의해 관점을 향상시킨다. 비디오 영상내 객체 영상과 가상의 3D 영상간에 발생하는 폐색 공간문제를 해결하기 위하여 반 자동 알고리즘을 제안하였다.

  • PDF

AR monitoring technology for medical convergence (증강현실 모니터링 기술의 의료융합)

  • Lee, Kyung Sook;Lim, Wonbong;Moon, Young Lae
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • The augmented reality(AR) technology enables to acquire various image information at the same time by combining virtual image information with the user's viewpoint. These AR technologies have been used to visualize patients' organs and tissues during surgery and diagnosis in the fields of Image-Guide Operation, Surgical Training, and Image Diagnosis by medical convergence, and provides the most effective surgical methods. In this paper, we study the technical features and application methods of each element technology for medical fusion of AR technology. In the AR technology for medical convergence, display, marker recognition and image synthesis interface technology is essential for efficient medical image. Such AR technology is considered to be a way to drastically improve current medical technology in the fields of image guide surgery, surgical education, and imaging diagnosis.

A Study on the Azimuth Direction Extrapolation for SAR Image Using ω-κ Algorithm (ω-κ 알고리즘을 이용한 SAR 영상의 방위각 방향 외삽 기법 연구)

  • Park, Se-Hoon;Choi, In-Sik;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1014-1017
    • /
    • 2012
  • In this paper, we introduce a method which enhances the azimuth resolution to obtain the high-resolution SAR image. We used ${\omega}-k$ algorithm to obtain the SAR image and extrapolation using auto-regressive(AR) method to enhance the azimuth resolution in the 2-D frequency domain. The AR method is a linear prediction model-based extrapolation technique. In the result, we showed the performance comparison with respect to the target range and the prediction order of Burg algorithm which is one of AR method.

Implementation of Real-time Object Tracking Algorithm based on Non-parametric Difference Picture and Kalman Filter (비모수적 차영상과 칼만 필터를 이용한 실시간 객체 추적 알고리즘의 구현)

  • 김영주;김광백
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.1013-1022
    • /
    • 2003
  • This paper implemented the real-time object tracking algorithm that extracts and tracks the moving object adaptively to input frame sequence by using non-parametric image processing method and Kalman filter-based dynamic AR(2) process method. By applying non-parametric image processing to input frames, the moving object was extracted from the background adaptively to diverse environmental conditions. And the movement of object was able to be adaptively estimated and tracked by modeling the various movement of object as dynamic AR(2) process and estimating based on the Kalman filter the parameters of AR(2) process dynamically changing along time. The experiments of the implemented object tracking system showed that the proposed method tracked the moving object as more approximately as the estimation error became about l/2.5∼1/50 of one of the traditional tracking method based on linear Kalman filter.

Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning (딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net)

  • Shin, SeokYong;Lee, SangHun;Han, HyunHo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.45-52
    • /
    • 2021
  • In this paper, we proposed an Atrous Residual U-Net (AR-UNet) to improve the segmentation accuracy of semantic segmentation method based on U-Net. The U-Net is mainly used in fields such as medical image analysis, autonomous vehicles, and remote sensing images. The conventional U-Net lacks extracted features due to the small number of convolution layers in the encoder part. The extracted features are essential for classifying object categories, and if they are insufficient, it causes a problem of lowering the segmentation accuracy. Therefore, to improve this problem, we proposed the AR-UNet using residual learning and ASPP in the encoder. Residual learning improves feature extraction ability and is effective in preventing feature loss and vanishing gradient problems caused by continuous convolutions. In addition, ASPP enables additional feature extraction without reducing the resolution of the feature map. Experiments verified the effectiveness of the AR-UNet with Cityscapes dataset. The experimental results showed that the AR-UNet showed improved segmentation results compared to the conventional U-Net. In this way, AR-UNet can contribute to the advancement of many applications where accuracy is important.