Abstract
This paper implemented the real-time object tracking algorithm that extracts and tracks the moving object adaptively to input frame sequence by using non-parametric image processing method and Kalman filter-based dynamic AR(2) process method. By applying non-parametric image processing to input frames, the moving object was extracted from the background adaptively to diverse environmental conditions. And the movement of object was able to be adaptively estimated and tracked by modeling the various movement of object as dynamic AR(2) process and estimating based on the Kalman filter the parameters of AR(2) process dynamically changing along time. The experiments of the implemented object tracking system showed that the proposed method tracked the moving object as more approximately as the estimation error became about l/2.5∼1/50 of one of the traditional tracking method based on linear Kalman filter.
본 논문은 연속적인 영상에 대해 비모수적 영상 처리 기법과 칼만 필터 기반의 동적 AR(2) 프로세스 기법을 적용하여 객체의 움직임을 적응적으로 추적하는 실시간 객체 추적 알고리즘을 구현하였다. 다양한 환경 조건에서 입력되는 영상에 대해 비모수적 영상 처리 기법을 이용하여 처리함으로써 효과적으로 움직임 객체를 추출하였으며, 객체의 움직임을 동적 AR(2) 프로세스 모형으로 모델링하고 동적으로 변하는 AR(2) 프로세스의 파라미터를 칼만 필터를 통해 추정함으로써 객체의 다변적인 움직임을 적응적으로 예측하여 추적할 수 있었다. 구현된 객체 추적 시스템을 실험한 결과, 기존의 선형 칼만 필터 기법을 이용한 추적 기법과 비교하여 추정 오차가 약 1/2.5∼1/50 만큼 더 적게 나와 객체의 움직임을 더 근사적으로 추적함을 알 수 있었다.