• Title/Summary/Keyword: AQUATIC MACROPHYTE

Search Result 30, Processing Time 0.027 seconds

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

Water quality improvement by the flating islands in a reservoir (인공식물섬을 이용한 저수지 수질개선)

  • 박병흔;권순국;장정렬
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.645-650
    • /
    • 1999
  • Three floating islands have been constructed for water quality improvement for a polluted irrigation reservoir. Phragmites australis was considered as the suitable aquatic macrophyte of the floating island. From April to August in 1999, the net primary productivity of Phragmites australis was 3,530gDM/㎡. Uptake rates of nitrogen and phoshorous by Phragmites australis planted in the floating island could be estimated to 10.2kg/d/ha and 0.8kg/d/ha, respectively. The floating islands worked well as a habitat of fish and prawns. Therefore, the floating islands could be evaluated a good measure ofwater quality improvement for irrigation reservoir.

  • PDF

Role of Aquatic Macrophytes as Refuge of Zooplankton on Physical Distribution (Summer Rainfall) in Shallow Wetlands (물리적인 교란 (여름 강우)에 대한 동물플랑크톤 서식처로서 수생식물의 중요성)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kim, Dong-Hwan;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.308-319
    • /
    • 2016
  • In order to evaluate the role of macrophytes as refuge of zooplankton on physical distribution (i.e. summer rainfall), we investigated the environmental factors, macrophytes, and zooplankton in waterside zones (macrophytes zones) and open water zones of 17 wetlands from May and August, 2011. In this study, a total of 51 zooplankton species were identified, and Polyarthra sp. and Diaphanosoma brachyurum were found to be the most dominant species. Waterside area of each wetland were occupied by a total of 10 macrophyte species, species composition and biomass (dry weight) were different in the survey sites. Zooplankton was more abundant in waterside zone than open water zones lacking macrophytes (One-way ANOVA, df=2, F=27.1, P<0.05), in particular, waterside zone of 1, 8, 9, 10, and 11 wetland were supported by high zooplankton density after summer rainfall. This wetlands were developed by various macrophyte species than other wetland, and submerged plant commonly presented. Waterside zones with various macrophyte species provides complexity to the habitat structure, should be utilized as refuge to avoid disturbance such as summer rainfall. The results indicate that macrophytes are the key components to enhance bio-diversity include zooplankton, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.

Zooplankton Community Distribution in Aquatic Plants Zone: Influence of Epiphytic Rotifers and Cladocerans in Accordance with Aquatic Plants Cover and Types (수생식물이 발달된 습지에서 동물플랑크톤 군집 분포: 수생식물의 밀도 및 종류가 부착성 윤충류와 지각류에게 미치는 영향)

  • Choi, Jong-Yun;La, Geung-Hwan;Kim, Seong-Ki;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.86-93
    • /
    • 2013
  • We monitored 32 wetlands in order to investigate the influence of aquatic plants on zooplankton density and diversity in the littoral zone in Gyeongsangnam-do from May to June in 2011. A total of 65 zooplankton species were identified in the study sites. Among them, the diversity of epiphytic zooplankton were higher (40 species) than planktonic zooplankton. Littoral zones of all wetlands were covered by various aquatic plants, and influenced the epiphytic zooplankton assemblages. Based on the data from $1{\times}1$ (m) quadrat sampling, epiphytic and planktonic rotifer density showed no significant relationships with macrophyte cover. However, the epiphytic cladocerans density significantly increased under high aquatic plant cover ($r^2=0.39$, p<0.05, n=32). Types of aquatic plants strongly influenced epiphytic zooplankton density. Upo and Jangcheok are locations which have well developed Phragmites communis and Ceratophyllum demersum communities in the littoral zone, and a higher density of epiphytic zooplankton was recorded on the surface of C. demersum. Especially, rotifers such as Lepadella, Monostyla and Testudinella showed obvious differences (One-way ANOVA, p<0.05 for all three species). This result suggests that epiphytic zooplankton have a substrate preference for larger surface areas, likely for adherence, on C. dimersum. In conclusion, the complex structure of the littoral plant community is expected to provide diverse refuge and microhabitats to epiphytic zooplankton.

Distribution Dynamics of Fish Community in Shallow Wetland by Environmental Variables (얕은 습지에서 환경 요인에 따른 어류상 분포 특성)

  • Choi, Jong-Yun;Jo, Hyunbin;Kim, Seong-Ki;La, Geung-Hwan;Joo, Gea-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.391-400
    • /
    • 2015
  • In order to investigate the distribution and species composition of fish in shallow wetlands that might be affected by environmental factors, we investigated the physicochemical parameters, macrophytes biomass, and fish assemblage in 24 shallow wetlands in South Korea from May to June, 2012. In this study, a total of 20 fish species were identified, and Cypinidae were found to be the most dominant species. Physicochemical parameters and macrophyte biomass were different in the survey sites, and macrophytes biomass, in particular, showed a positive relationship with fish abundance in stepwise multiple regression (df=1, F=32.00, P=0.001). According to the result of the cluster analysis between survey sites, the survey sites were divided into three groups in accordance with species composition of fish in relation to macrophytes biomass. In the wetlands of the first group, Lepomis macrochirus which belongs to Centrarchidae was found to be dominant and other fish assemblages were hardly seen. In the second group, unlike the first group, Carassius auratus that belongs to Cypinidae was found to be dominant. In the third group, Lepomis macrochirus was found to be as dominant as the first group but various other fish species appeared. Where there was abundance of the main food sources (i. e. zooplankton) of fish in the survey sites, there were more diverse macrophyte biomass. Consequently, it is proven that macrophytes strongly affect the species composition and abundance of fish, and high biomass of macrophytes support high assemblage of fish. Based on these results, we recommend establishing diverse aquatic macrophytes communities when restoring or creating wetlands to assure high diversity of fish species that use macrophytes as their habitat.

Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth (부레옥잠을 이용한 Clostridium beijerinckii의 Biobutanol 생산)

  • Park, Bong-Je;Park, Hye Min;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.79-84
    • /
    • 2016
  • Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.

The Relation Between Water Quality and Structure of Aquatic Ecosystem in Agriculture Reservoir, Otae-ji (농업용저수지인 오태지의 수생태계구조와 수질과의 관련성)

  • Seo, Jung-Kwan;Lee, Hae-Jin;Jeong, Hyun-Gi;Tak, Bo-Mi;Lee, Jae-Kwan;Kim, In-Taek;Lee, Jong-Eun;Hwang, Ui-Wook
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1407-1421
    • /
    • 2010
  • This study was carried out to elucidate the relation between water quality and structure of the aquatic ecosystem in the agriculture reservoir Otae-ji from January to December in 2009. The proportion of forest was 46.98%, which means that non-point sources are major contributor of water pollution in this area. The annual mean COD(Chemical Oxygen Demand) in Otae-ji was $3.6mgL^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. Although total phosporus concentration in the reservoir was high in August due to large inflow of nutrients from outside the reservoir during monsoon season, there was no break out of significant algal bloom in the summer. The seasonal succession of phytoplankton showed that the dinophyta dominated in the the spring, chlorophyta in the summer, chrysophyta and chlorophyta in the autumn and chrysophyta in the winter. In case of zooplankton, rotifers dominated in the most seasons, but cladoceran(Bosmina longirostris) dominated in June and copepod(Nauplii) in August. The macrophyte plants showed diverse species compositon consisted of 3 varieties, 24 species, 23 genera, 15 families and 14 orders. The macroinvertebrates also showed various FFG(Functional Feeding Groups) such as GC(Gathering-Collector), P(Predator), SH(Shedder), FC(Filter-Collector) and PP(Plant-Piercer). Ecosystem stability analysis using aquatic insects was classified as Group I, which has high resilience and resistance indices. A total of 14 species of fish was collected but exotic species such as Lepomis macrochirus and Micropterus salmoides were not found in Otae-ji. In conclusion, the preservation of healthy food wed in the reservoir ecosystem is closely related to water quality management as well as effective prevention of algal bloom by helping good material circulation in aquatic ecosystems.

A Study on the Removal of Pollutants from Wastewater by Aquatic Macrophytes (수생식물에 의한 폐수의 오염물질제거에 관한 연구)

  • Cho, Hae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.941-946
    • /
    • 2012
  • Macrophyte plays an important role in purification of wastewater. They have capacity to improve the water quality by absorbing nutrients, with their effective root system. In this study, removal of nutrient as well as organic matter was observed by some important macrophytes i.e. Pistia stratoites, Hydrocharis dubia and Salvinia sp. indepe ndently as well as in mixed culture under the laboratory condition. The highest total nitrogen removal was observed for Pistia stratoites (86.47%) in monoculture and Salvinia sp. + P. stratoites (76.11%) in mixed culture system. Corresponding figures for total phosphorous were observed for P. stratoites (75.60%) in monoculture and Salvinia sp. + P. stratoites (71.11%) in mixed culture system. Similar result was observed for ammonia removal in both systems. Additionally, P. stratoites showed the highest removal of organic matter, in monoculture system (68.46%) where as Salvinia sp. + P. stratoites showed the highest removal of organic matter in mixed culture system (82.73 %).

Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India

  • Khatun, Amina;Pal, Sandipan;Mukherjee, Aloke Kumar;Samanta, Palas;Mondal, Subinoy;Kole, Debraj;Chandra, Priyanka;Ghosh, Apurba Ratan
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.21.1-21.7
    • /
    • 2016
  • Objectives The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Methods Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus. Results The concentration of metals in sediment were, from highest to lowest, Mn ($205.0{\pm}65.5mg/kg$)>Cu ($29.9{\pm}10.2mg/kg$)>Pb ($22.7{\pm}10.3mg/kg$)>Cd ($3.7{\pm}2.2mg/kg$). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations (p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation (p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Conclusions Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta.

Decomposition and Nutrient Dynamics of Aquatic Macrophytes in Lake Paldang

  • Shin, Jin-Ho;Yang, Keum-Chul;Yeon, Myung-Hun;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • This study examined the decomposition of blades and culms of aquatic emergent plant species, Zizania latifolia, Phragmites communis and Typha angustata, and changes in nutrient contents during decomposition. Z. latifolia, P. communis and T. angustata were the most frequently occurring species in Lake Paldang of Han River, Korea. Experiments were carried out from July 27 to December 14, 2005 in Lake Paldang using the litter bag method. The remaining masses of blade litter of each species at the end of experimental period were 21.2% of initial dry weight in Z. latifolia, 32.5% in P. communis, and 44.7% in T. angustata. In addition, the remaining mass of culm was 22.6% of initial dry mass in Z. latifolia, 56.4% in P. communis, and 38.1% in T. angustata. During the litter decomposition period, P, K, Na, and Mg concentration decreased rapidly within 10 days, but Ca and Mg concentration declined slowly. K contents remained below 10% of initial values in all litter samples retrieved during decomposition, whereas Ca and Mg concentration remained above 40% and 50% during decomposition in all three species. Na, P and Mn contents in litter varied among species and plant parts. P concentration in culms of P. communis remained at about 60% of initial concentration throughout the study, but the remaining P content in culms of Z. latifolia was only 10% of the original value at the end of the study period. The Mn concentration in blades of P. communis increased about 15-fold relative to the initial content by the end of experiment.