DOI QR코드

DOI QR Code

Zooplankton Community Distribution in Aquatic Plants Zone: Influence of Epiphytic Rotifers and Cladocerans in Accordance with Aquatic Plants Cover and Types

수생식물이 발달된 습지에서 동물플랑크톤 군집 분포: 수생식물의 밀도 및 종류가 부착성 윤충류와 지각류에게 미치는 영향

  • Choi, Jong-Yun (Department of Biological Sciences, Pusan National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Kim, Seong-Ki (Department of Biological Sciences, Pusan National University) ;
  • Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University) ;
  • Joo, Gea-Jae (Department of Biological Sciences, Pusan National University)
  • Received : 2012.09.20
  • Accepted : 2013.01.22
  • Published : 2013.03.31

Abstract

We monitored 32 wetlands in order to investigate the influence of aquatic plants on zooplankton density and diversity in the littoral zone in Gyeongsangnam-do from May to June in 2011. A total of 65 zooplankton species were identified in the study sites. Among them, the diversity of epiphytic zooplankton were higher (40 species) than planktonic zooplankton. Littoral zones of all wetlands were covered by various aquatic plants, and influenced the epiphytic zooplankton assemblages. Based on the data from $1{\times}1$ (m) quadrat sampling, epiphytic and planktonic rotifer density showed no significant relationships with macrophyte cover. However, the epiphytic cladocerans density significantly increased under high aquatic plant cover ($r^2=0.39$, p<0.05, n=32). Types of aquatic plants strongly influenced epiphytic zooplankton density. Upo and Jangcheok are locations which have well developed Phragmites communis and Ceratophyllum demersum communities in the littoral zone, and a higher density of epiphytic zooplankton was recorded on the surface of C. demersum. Especially, rotifers such as Lepadella, Monostyla and Testudinella showed obvious differences (One-way ANOVA, p<0.05 for all three species). This result suggests that epiphytic zooplankton have a substrate preference for larger surface areas, likely for adherence, on C. dimersum. In conclusion, the complex structure of the littoral plant community is expected to provide diverse refuge and microhabitats to epiphytic zooplankton.

본 연구는 얕은 수심의 습지에서 발달된 수생식물의 피도와 종류가 동물플랑크톤 밀도와 다양성에 미치는 영향을 파악하기 위해 경상남도에 위치한 32개의 습지에서 2011년 5~6월까지 조사를 수행하였다. 조사 결과, 총 65종의 동물플랑크톤이 출현하였으며, 대부분의 습지에서는 부유성 종보다 부착성 종이 더 많은 수를 보였다(40종). 조사된 모든 습지에서는 수생식물이 매우 우점하였으며, 이는 부착성 동물플랑크톤 분포와 밀접한 관련을 가지는 것으로 나타났다. $1{\times}1$ (m) 방형구를 이용하여 측정된 수생식물의 피도와 동물플랑크톤간의 상관성을 분석한 결과, 부착성 및 부유성 윤충류는 상관성이 나타나지 않았으나, 부착성 지각류는 뚜렷한 상관성를 나타냈다($r^2=0.39$, p<0.05, n=32). 부착성 동물플랑크톤에 대한 수생식물의 영향을 파악하기 위해 조사된 습지 중 수생식물이 가장 잘 발달된 우포늪과 장척호의 갈대(Phragmites communis)와 붕어마름(Ceratophyllum demersum)에 부착된 동물플랑크톤의 채집을 수행하였다. 대부분의 부착성 동물플랑크톤은 갈대보다 붕어마름에서 더 높은 밀도를 보였으며, 이 중 Lepadella, Monostyla, Testudinella는 두 식물간에 매우 뚜렷한 밀도 차이를 나타냈다(One-way ANOVA, p<0.05). 붕어마름은 갈대보다 부착할 수 있는 공간이 상대적으로 넓으며, 복잡한 구조를 가지기 때문에 많은 동물플랑크톤이 부착할 수 있는 기질표면 또한 풍부한 사료된다. 결론적으로 수생식물은 부착성 동물플랑크톤의 서식을 위한 매우 중요한 요소이며, 이들의 밀도와 종 다양성 증가에 크게 기여하는 것으로 판단된다.

Keywords

References

  1. Angeler, D.G., M. Alvarez-Cobelas, C. Rojo and S. Sanchez-Carrillo. 2000. The significance of water inputs to plankton biomass and trophic relationships in a semi-arid freshwater wetland (central Spain). Journal of Plankton Research 22: 2075-2093. https://doi.org/10.1093/plankt/22.11.2075
  2. Balayla, D.J. and B. Moss. 2003. Spatial patterns and population dynamics of plant-associated microcrustacea (Cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology 37: 417-435. https://doi.org/10.1023/B:AECO.0000007045.85315.dc
  3. Braun-Blanquet, J. 1932. The study of plant communities (translated by G.D. Fuller and H.S. conard, 1965). McGraw-Hill Book Company Inc., London. 377p.
  4. Brix, H. 1997. Do aquatic plants play a role in constructed treatment wetlands? Water Science and Technology 35: 11-17.
  5. Bunn, S.E. and P.I. Boon. 1993. What sources of organic carbon drive food webs in billabongs? Oecologia 96: 85-94. https://doi.org/10.1007/BF00318034
  6. Burks, R.L., D.M. Lodge, E. Jeppesen and T.L. Lauridsen. 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343-365. https://doi.org/10.1046/j.1365-2427.2002.00824.x
  7. Castilho-Noll, M.S.M., C.F. Camara, M.F. Chicone and E.H. Shibata. 2010. Planktonic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of Sao Paulo State, Brazil. Biota Neotropica.
  8. Castro, B.B., S.M. Marques and F. Goncalves. 2007. Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshwater Biology 52: 421-433. https://doi.org/10.1111/j.1365-2427.2006.01717.x
  9. Cattaneo, A., G. Galanti, S. Gentinetta and S. Romo. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved aquatic plants in an Italian lake. Freshwater Biology 39: 725-740. https://doi.org/10.1046/j.1365-2427.1998.00325.x
  10. Crowder, L.B. and W.E. Cooper. 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802-1813. https://doi.org/10.2307/1940122
  11. Denny, P. 1994. Biodiversity and wetlands. Wetlands Ecology and Management 3: 55-61.
  12. Einarsson, A. and E.B. Örnólfsdóttir. 2004. Long-term changes in benthic Cladocera populations in Lake Myvatn, Iceland. Aquatic Ecology 38: 253-262. https://doi.org/10.1023/B:AECO.0000032060.29256.95
  13. Horppila, J., P. Eloranta, A. Liljendahl-Nurminen, J. Niemisto and Z. Pekcan-Hekim. 2009. Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake. Aquatic Ecology 43: 91-103. https://doi.org/10.1007/s10452-007-9158-3
  14. Jasser, I. 1995. The influence of aquatic plants on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21-32. https://doi.org/10.1007/BF00007855
  15. Jeong, H.K., J.K. Seo, H.J. Lee, W.C. Lee and J.K. Lee. 2010. Habitats selection of zooplankton between pelagic and littoral zone in shallow reservoirs in summer. Korean Journal of Environmental Biology 28: 188-195.
  16. Jeong, K.S., D.K. Kim, H.S. Shin, J.D. Yoon, H.W. Kim and G.J. Joo. 2012. Impact of summer rainfall on the seasonal water quality variation (Chlorophyll a) in the regulated Nakdong river. Journal of Civil Engineering 15: 983-994.
  17. Kato, Y., Y. Takemon and M. Hori. 2009. Invertebrate assemblages in relation to habitat types on a floating mat in Mizorogaike Pond, Kyoto, Japan. Limnology 10: 167-176. https://doi.org/10.1007/s10201-009-0274-8
  18. Kim, D.K., K.S. Jeong, K.H. Chang, G.H. La, G.A. Joo and H.W. Kim. 2012. Patterning zooplankton communities in accordance with annual climatic conditions in regulated river system (Nakdong river, South Korea). International Review of Hydrobiology 97: 55-72. https://doi.org/10.1002/iroh.201111428
  19. Kim, H.W., J.Y. Choi, G.H. La, K.S. Jeong and G.g. Joo. 2010. Relationship between rainfall and zooplankton community dynamics in a riverine wetland ecosystem (Upo). Korea Jounal of Limnology 43: 129-135.
  20. Koste, W. 1978. Rotatoria, die Radertiere Mitteleuropas: Uberordnung Monogononta: ein Bestimmungswerk (German Edition). 2 edition. Gebruder Borntraeger, Stuttgart.
  21. Kuczynska-Kippen, N. 2007. Habitat choice in rotifera communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia 593: 27-37. https://doi.org/10.1007/s10750-007-9073-6
  22. Lee, J.J. and J.H. Lee. 2009. Dynamics of the phytoplankton community in Upo Wetland. Korean Journal of Limnology 42: 232-241.
  23. Mizuno, T. and E. Takahashi. 1999. An illustrated guide to freshwater zooplankton in japan. Tokai University Press.
  24. Nicolle, A., L.A. Hansson and C. Bronmark. 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia 652: 119-125. https://doi.org/10.1007/s10750-010-0323-7
  25. Porter, K. 1977. The plant-animal interface in freshwater ecosystems. American Scientist 65: 159-170.
  26. Ramesh, M.R., K.M. Shankar, C.V. Mohan and T.J. Varghese. 1999. Comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aquacultural Engineering 19: 119-131. https://doi.org/10.1016/S0144-8609(98)00046-6
  27. Robinson, G.G.C., S.E. Gurney and L.G. Goldsborough. 1997. Response of benthic and planktonic algal biomass to experimental water-level manipulation in a prairie lakeshore wetland. Wetlands 17: 167-181. https://doi.org/10.1007/BF03161407
  28. Sakuma, M., T. Hanazato, R. Nakazato and H. Haga. 2002. Methods for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Limnology 3: 115-119. https://doi.org/10.1007/s102010200013
  29. Sakuma, M., T. Hanazato, A. Saji and R. Nakazato. 2004. Migration from plant to plant: an important factor controlling densities of the epiphytic Cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17-23. https://doi.org/10.1007/s10201-003-0110-5
  30. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacea). Australian Museum, Sydney, Australia.
  31. Son, M.W. and W.G. Jeon. 2003. Physical geographical characteristrics of natural Wetlands on the downstream reach of Nakdong river. The Korean Association of Regional Geographers 9: 66-76.
  32. Troch, M.D., C. Cnudde, W. Vyverman and A. Vanreusel. 2008. Increased production of faecal pellets by the benthic harpacticoid Paramphiascella fulvofasciata: importance of the food source. Marine Biology 156: 469-477.