• 제목/요약/키워드: APR1400 reactors

검색결과 21건 처리시간 0.025초

신형경수로 증기발생기 마모손상 억제를 위한 설계최적화 (The Design Optimization of Preventive Measure Against APR1400 Steam Generator Tube Fretting Wear)

  • 임혁순;박영섭;이광한;이석호;정대율
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2047-2052
    • /
    • 2004
  • Inconel-600 alloy has been used as steam generator tube material for current pressurized water reactors (PWRs). The long-term operation of steam generators showed that the use of this material induced localized corrosion damages and increased tube wear of steam generator. To protect these problems, steam generator tube material is being changed to Inconel-690 alloy. Based on the current trend, we have chosen Inconel 690 as the Advanced Power Reactor 1400 (APR1400) steam generator(SG) tube material and performed the design optimization of preventive measure against tube fretting wear for the APR1400 steam generator. In this paper, we examined the technical consideration in this modification : the selection of material, wear characteristics, effect of the Egg-crate Flow Distribution Plate installation, and effect analysis of vertical strip installation.

  • PDF

VIBRATION AND STRESS ANALYSIS OF A UGS ASSEMBLY FOR THE APR1400 RVI CVAP

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.817-824
    • /
    • 2012
  • The most important component of a nuclear power plant is its nuclear reactor. Studies on the integrity of reactors have become an important part regarding the safety of a nuclear power plant. The US Nuclear Regulatory Commission Regulatory Guide (NRC RG) 1.20 presents a Comprehensive Vibration Assessment Program (CVAP) to be used to verify the structural integrity of the Reactor Vessel Internals (RVI) for flow-induced vibration prior to commercial operation. However, there are few published studies related to the RVI CVAP. We classified the Advanced Power Reactor 1400 (APR1400) RVI CVAP as a non-prototype category-2 reactor as part of an independent validation of its design. The aim of this paper is to present the results of structural response analyses of the Upper Guide Structure (UGS) assembly of the APR1400 reactor. These results show that the UGS and the Inner Barrel Assembly (IBA) meet the specified integrity levels of the design acceptance criteria. The vibration and stress analysis results in this paper will be used as basic information to select measurement locations of the vibration and stress for the APR1400 RVI CVAP.

The influence of the water ingression and melt eruption model on the MELCOR code prediction of molten corium-concrete interaction in the APR-1400 reactor cavity

  • Amidu, Muritala A.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1508-1515
    • /
    • 2022
  • In the present study, the cavity module of the MELCOR code is used for the simulation of molten corium concrete interaction (MCCI) during the late phase of postulated large break loss of coolant (LB-LOCA) accident in the APR1400 reactor design. Using the molten corium composition data from previous MELCOR Simulation of APR1400 under LB-LOCA accident, the ex-vessel phases of the accident sequences with long-term MCCI are recalculated with stand-alone cavity package of the MELCOR code to investigate the impact of water ingression and melt eruption models which were hitherto absent in MELCOR code. Significant changes in the MCCI behaviors in terms of the heat transfer rates, amount of gases released, and maximum cavity ablation depths are observed and reported in this study. Most especially, the incorporation of these models in the new release of MELCOR code has led to the reduction of the maximum ablation depth in radial and axial directions by ~38% and ~32%, respectively. These impacts are substantial enough to change the conclusions earlier reached by researchers who had used the older versions of the MELCOR code for their studies. and it could also impact the estimated cost of the severe accident mitigation system in the APR1400 reactor.

Methodology for Developing Standard Schedule Activities for Nuclear Power Plant Construction through Probabilistic Coherence Analysis

  • kim, Woojoong
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.8-13
    • /
    • 2017
  • Nuclear power plant (NPP) constructions are large scale projects that are executed for several years, and schedule control utilizing various schedules is a critically important factor. Recently Korea independently developed the Advanced Power Reactor (APR) 1400 and is building nuclear facilities applying this new reactor type. The construction of Shin-Kori NPP (SKN) Unit 3, which adopted the APR1400, was completed and commercial operation has begun, while, SKN 4, Shin-Hanul NPP (SHN) Units 1&2, and SKN 5&6 are currently under construction. Prior to the development of the APR1400, Korea built 24 reactors and accumulated the schedule data of various reactor types which provided the foundation for schedule reduction to be possible. However, as there is no schedule development and review system established based on the standard schedule data (standard activities, durations, etc.) by reactor type, the process for developing the schedule for new builds is low in efficiency consuming much time and manpower. Also all construction data has been accumulated based on schedule activities. But because the connectivity of activities between projects is low, it is difficult to utilize such accumulated data (causes for schedule delay, causes for design changes, etc.) in new build projects. Due to such reasons, issues continue to arise in the process of developing standard schedule activities and a standard schedule for nuclear power plant construction. In order to develop a standard schedule for NPP construction, i) the development of an NPP standard schedule activity list, ii) development of the connection logic of NPP standard schedule activities, iii) development of NPP standard schedule activity resources and duration, and iv) integration of schedule data need to be performed. In this paper, an analysis was made on the coherence of schedule activity descriptions of existing NPPs by applying the probabilistic methodology on activities with low connectivity due to the utilization of the numbering system of four APR1400 reactors (SHN 1&2 and SKN 3&4).This study also describes the method for developing a standard schedule activity list and connectivity measures by extracting same and/or similar schedule activities.

  • PDF

원자력 열수력 실험 연구의 현황과 미래 - 연구개발 동향 고찰 - (Status and Future of Experimental Study on Nuclear Thermal Hydraulics - A Review of Research and Development Status -)

  • 박군철;전지한
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.643-657
    • /
    • 2009
  • This paper introduces the current nuclear experimental research activities in KAERI, the unique nuclear research institute in Korea, and the universities in Korea to solve and assess the issues which have been faced in the design of new reactors such as APR1400, SMART, GEN-IV reactors as well as fusion reactor. Also the experimental evaluations of safety for operating nuclear plants have been presented. The nuclear thermalhydraulic experiments performed in such organizations are classified the fundamental test, the separated effect test, and the integral effect test with ATLAS and SNUF. Introduction is deployed according to institutes. Finally, the future works and the direction of research voyage in the nuclear thermal-hydraulic field were suggested.

신형경수로의 증기발생기 전열관 재질 Inconel-690 적용 (The Use of Inconel 690 as Tube Material For Advanced Pressurized Water Reactor Steam Generator)

  • 임혁순;정대율;변성철;이광한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.49-54
    • /
    • 2003
  • Most of the operating pressurized water reactors (PWRs)has chosen Inconel 600 as steam generator tubing. The long-term operation of steam generators showed that the use of this material induced localized corrosion damages. The current trend is using Inconel 690 as a tube material for the replacement steam generators. Based on the current trend, we have chosen Inconel 690 for the advanced Power Reactor 1400 (APR1400) steam generator tube material. In this paper, we examined the technical consideration in this modification: the effect of chemical composition, thermal conductivity, corrosion resistance and wear characteristics

  • PDF

MAJOR THERMAL-HYDRAULIC PHENOMENA FOUND DURING ATLAS LBLOCA REFLOOD TESTS FOR AN ADVANCED PRESSURIZED WATER REACTOR APR1400

  • Park, Hyun-Sik;Choi, Ki-Yong;Cho, Seok;Kang, Kyoung-Ho;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.257-270
    • /
    • 2011
  • A set of reflood tests has been performed using ATLAS, which is a thermal-hydraulic integral effect test facility for the pressurized water reactors of APR1400 and OPR1000. Several important phenomena were observed during the ATLAS LBLOCA reflood tests, including core quenching, down-comer boiling, ECC bypass, and steam binding. The present paper discusses those four topics based on the LB-CL-11 test, which is a best-estimate simulation of the LBLOCA reflood phase for APR1400 using ATLAS. Both homogeneous bottom quenching and inhomogeneous top quenching were observed for a uniform radial power profile during the LB-CL-11 test. From the observation of the down-comer boiling phenomena during the LB-CL-11 test, it was found that the measured void fraction in the lower down-comer region was relatively smaller than that estimated from the RELAP5 code, which predicted an unrealistically higher void generation and magnified the downcomer boiling effect for APR1400. The direct ECC bypass was the dominant ECC bypass mechanism throughout the test even though sweep-out occurred during the earlier period. The ECC bypass fractions were between 0.2 and 0.6 during the later test period. The steam binding phenomena was observed, and its effect on the collapsed water levels of the core and down-comer was discussed.

원자력발전소 변압기 연결 선로 결상 검출 시스템 (Open-Phase Condition Detecting System for Transformer Connected Power Line in Nuclear Power Plant)

  • 하체웅;이도환
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.254-259
    • /
    • 2015
  • On January 30, 2012 an auxiliary component of Byron Unit 2 was tripped on bus under voltage. The cause of the event was the failure of the C-phase insulator track for the Unit 2 station auxiliary transformer(SAT) revenue metering transformer. In addition to this event, other events have occurred at other plants resulting in an open-phase condition.[1] Therefore, Nuclear Regulatory Commission(NRC) has requested that not only nuclear power plant(NPP) operating company but also its Design Certification(DC) applicant have to prepare open-phase detecting system in their operating plants and design document. In this paper, various open-phase conditions are simulated in NPP using Electromagnetic Transient Program(EMTP) and Atpdraw, and open-phase condition detecting system is proposed for Main Transformer(MT), Unit Auxiliary Transformer(UAT) and SAT connected power line in NPP.

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

Best-Estimate Analysis of MSGTR Event in APR1400 Aiming to Examine the Effect of Affected Steam Generator Selection

  • Jeong, Ji-Hwan;Chang, Keun-Sun;Kim, Sang-Jae;Lee, Jae-Hun
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.358-369
    • /
    • 2002
  • Abundant information about analyses of single steam generator tube rupture (SGTR) events is available because of its importance in terms of safety. However, there are few literatures available on analyses of multiple steam generator tube rupture (MSGTR) events. In addition, knowledge of transients and consequences following a MSGTR event are very limited as there has been no occurrence of MSGTR event in the commercial operation of nuclear reactors. In this study, a postulated MSGTR event in an APR1400 is analyzed using thermal-hydraulic system code MARSI.4. The present study aims to examine the effects of affected steam generator selection. The main steam safety valve (MSSV) lift time for four cases are compared in order to examine how long operator response time is allowed depending on which steam generate. (S/G) is affected. The comparison shows that the cases where two steam generators are simultaneously affected allow longer time for operator action compared with the cases where a single steam generator is affected. Furthermore, the tube ruptures in the steam generator where a pressurizer is connected leads to the shortest operator response time.