• Title/Summary/Keyword: APC

Search Result 338, Processing Time 0.026 seconds

Characteristics of Histamine Forming Bacteria from Tuna Fish Waste in Korea (국내 참치 부산물 내 히스타민 생성 주요 세균의 특성 구명)

  • Bang, Min-Woo;Chung, Chang-Dae;Kim, Seon-Ho;Chang, Moon-Baek;Lee, Sung-Sil;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.277-283
    • /
    • 2009
  • Biogenic amines are generally formed through the decarboxylation of specific free amino acids by exogenous decarboxylases released by microbial species associated with the fish products and fermented feeds. This study was conducted to investigate the properties of e tuna waste regarding the control of degradation of biogenic amines (histamine, tyramine, tryptamine, putrescine, and cadaverine) that might be related with the anti-nutritional factor of the tuna waste that is used for manufacturing domestic fish meal. The values of pH and the salt content were 6.51, 3.35% in tuna waste and 5.58 and 5.83% in tuna fish meal, respectively. The strains and dominant bacteria tested in the tuna waste sample were 9.20, 9.29, 5.67, 7.82 and 7.58 log CFU/g of total bacteria, aerobic plate count (APC), total coliform (TC), Lactobacillus spp. and Bacillus spp., respectively. The main histamine forming-bacteria (HFB) in tuna waste were detected by silica gel thin-layer chromatography (TLC) and 7 histamine-forming bacterial species were isolated among microbes grown in selective medium. The histamine concentration was determined by detection of fluorescence of ο-phthaldialdehyde (OPA) derivatives using HPLC and the date were used to reconfirm the identities of the amine-producing bacteria. The 15 histamine- forming bacteria strains grown in trypicase soy broth (TSB) supplemented with 1% L-histidine (TSBH) were identified as Lactococcus(L.) lactis subsp. lactis, Klebsiella pneummonlae, L. garvieae 36, Vibrio olivaceus, Hafnia alvei and L. garvieae which were main dominant amine - producing strains, and Morganella morganii identified by 16S ribosomal RNA (rRNA) sequencing with PCR amplification. A Phylogenetic tree generated from the 16S rRNA sequencing data showed different phyletic lines that could be readily classified as biogenic amine forming gram-positive and negative bacteria.

Distribution of Microorganisms in Perilla Leaf and Cultivation Area (들깻잎과 생산환경의 미생물 분포)

  • Kim, Se-Ri;Lee, Ji-Young;Lee, Seo-Hyun;Ko, Hyeon-Seok;Yoon, Yo-Han;Kwon, Se-Hyeok;Ryu, Kyoung-Yul;Yun, Hye-Jeong;Kim, Won-Il;Yun, Jong-Chul;Kim, Doo-Ho;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.243-248
    • /
    • 2011
  • The prevalence and distribution of hazardous microorganisms were investigated from the major perilla cultivation area at Milyang, Gyeongnam province, Korea. Aerobic plate count (APC) and coliform count of perilla leaves were 4.82 log CFU/g and 3.85 log CFU/g, respectively. E. coli, S. aureus and B. cereus were detected in 3.0% (4/114), 7.9% (9/114) and 46.5% (53/114) of examined perilla leaves. However, E. coli O157:H7, Salmonella spp, and L. monocytogenes were not detected. The distribution of hazardous microorganisms in perilla leaf cultivation environment were compared and the concentration of APC and coliform counts were more than 3.0 log CFU/(mL, g, $100cm^2$, hand) from most of the samples. S. aureus were detected from irrigation water, packing table, packing vinyl, hand, and clothes. Also, B. cereus was frequently detected from the examined samples. Especially, packing table and collection container were contaminated with maximum 5.5 log $CFU/100cm^2$ of B. cereus. Good Agricultural Practice (GAP) system should be introduced to farms to enhance the safety of perilla leaves.

Identification of DNA Methylation Markers for NSCLC Using Hpall-Mspl Methylation Microarray (Hpall-Mspl Methylation Microarray를 이용한 비소세포폐암의 DNA Methylation Marker 발굴)

  • Kwon, Mi Hye;Lee, Go Eun;Kwon, Sun Jung;Choi, Eugene;Na, Moon Jun;Cho, Hyun Min;Kim, Young Jin;Sul, Hye Jung;Cho, Young Jun;Son, Ji Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.495-503
    • /
    • 2008
  • Background: Epigenetic alterations in certain genes are now known as at least important as genetic mutation in pathogenesis of cancer. Especially abnormal hypermethylation in or near promoter region of tumor suppressor genes (TSGs) are known to result in gene silencing and loss of gene function eventually. The authors tried to search for new lung cancer-specific TSGs which have CpG islands and HpaII sites, and are thought to be involved in carcinogenesis by epigenetic mechanism. Methods: Tumor tissue and corresponding adjacent normal tissue were obtained from 10 patients who diagnosed with non small cell lung cancer (NSCLC) and underwent surgery in Konyang university hospital in 2005. Methylation profiles of promoter region of 21 genes in tumor tissue & non-tumor tissue were examined with HpaII-MspI methylation microarray (Methyl-Scan DNA chip$^{(R)}$, Genomic tree, Inc, South Korea). The rates of hypermethylation were compared in tumor and non-tumor group, and as a normal control, we obtained lung tissue from two young patients with pneumothorax during bullectomies, methylation profiles were examined in the same way. Results: Among the 21 genes, 10 genes were commonly methylated in tumor, non-tumor, and control group. The 6 genes of APC, AR, RAR-b, HTR1B, EPHA3, and CFTR, among the rest of 11 genes were not methylated in control, and more frequently hypermethylated in tumor tissue than non-tumor tissue. Conclusion: In the present study, HTR1B, EPHA3, and CFTR are suggested as possible novel TSGs of NSCLC by epigenetic mechanism.

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

Quality Changes and Shelf-life of Seasoned Pork with Soy Sauce or Kochujang during Chilled Storage (간장과 고추장 양념 돈육의 냉장 중 품질 변화와 저장 수명)

  • 최원선;이근택
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • The seasoned pork with soy sauce(SS) or Kochujang(SK) was manufactured using hind and fore leg as main raw material and the quality characteristics and shelf-life were investigated during storage at 5$\^{C}$ and 10$\^{C}$ after having packaged with air. The initial total aerobic plate counts(APC) of SS and SK were 5.24 and 5.75 log10 CFU/㎠, respectively. APC exceeded 7 log10CFU/cm2 after 10 days at 5$\^{C}$ and 6 days at 10$\^{C}$ far SS, and after 6 days at 5$\^{C}$ and 4 days at 10$\^{C}$ for SK, respectively. In the sensory test, the SS samples stored at 5$\^{C}$ and 10$\^{C}$ were assessed as lower than 3.0 points, the criterium of consumer acceptability, after 10 and 8 days, respectively. In the case of SK samples, the point of this time was at day 10 and 6, respectively when they were stored at 5$\^{C}$ and 10$\^{C}$. As storage time extended, pH and water content tended to decrease. Contrarily, the increase of TBA and VBN values was observed during storage and this was more pronounced at 10$\^{C}$ than at 5$\^{C}$ . The oxygen concentration in the package was 19.8 and 19.9% each for 55 and SK samples at the beginning but it was gradually decreased thereafter. On the other hand, the concentration of carbon dioxide was increased with the extension of storage. Based on the above results, the shelf-lives of seasoned pork were estimated to be 8 days for SS and SK stored at 5$\^{C}$ and 6 days for SS and 4 days for SK stored at 10$\^{C}$.

Effects of Seed Decontamination Treatments on Germination of Red Radish Seeds during Presoaking (적무 새싹종자의 소독제 처리에 의한 발아 시 미생물 제어효과)

  • Jun, So-Yun;Kim, Yun-Hwa;Sung, Jung-Min;Jeong, Jin-Woong;Moon, Kwang-Deog;Kwon, Joong-Ho;Lee, Yeon-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1528-1534
    • /
    • 2010
  • The antibacterial effects of seed decontamination during presoaking before sprouting as an intervention step for eliminating foodborne pathogens on red radish seeds were evaluated. The effect of seed decontamination on seed germination rate was also evaluated. Red radish seeds were inoculated (at a level of 3 to 4 log CFU/g) with Listeria monocytogenes ATCC 19111 and decontaminated with 20,000 ppm calcium hypochlorite, 50 and 100 ppm chlorinated water, acidic electrolyzed water, low-alkaline electrolyzed water, and ozonated water for 6 hours. The control seeds were immersed in distilled water. The germination rate was measured on each treatment for 48 hours. Treatments with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were more effective than treatments with chlorinated water and ozonated water. Immersion in 20,000 ppm calcium hypochlorite resulted in the largest microbial reduction (more than 3 logs). Treatments with acidic and low-alkaline electrolyzed water reduced APC by 3 logs and L. monocytogenes counts by 2 logs. After sprouting, APC and L. monocytogenes counts on seeds treated with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were significantly lower than the control. The germination rate ranged from 93.5% to 97.7% except for 20,000 ppm calcium hypochlorite (from 82.3% to 84.8%) after 48 hours. Although the treatments tested in this study will not eliminate L. monocytogenes on inoculated red radish seeds, the results show that rapid growth of surviving cells during sprouting could be prevented if red radish seeds are given a presoak treatment used in combination with a disinfectant treatment of irrigation water.

Microbiological Hazard Analysis for Strawberry Farms at the Harvest Stage to Establish Good Agricultural Practices (GAP) Model Based on Principle of HACCP (HACCP 원리에 기초하는 GAP모델 확립을 위한 딸기 농장의 수확단계에 대한 미생물학적 위해요소 조사)

  • Shim, Won-Bo;Kim, Kyeong-Yeol;Yoon, Yo-Han;Kim, Jang-Eok;Shim, Sang-In;Kim, Yun-Shik;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.104-110
    • /
    • 2013
  • This study assessed hazards at the harvest stage of strawberry farms which may cause risk to humans. A total of 216 samples were collected from 6 strawberry farms (soil culture farms: A, B, C; nutriculture farms: D, E, F) located in Western Gyeongnam. The collected samples were subjected for sanitary indicator bacteria (aerobic plate count, coliforms and Escherichia coli), major foodborne pathogens (E. coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus and Bacillus cereus), and fungi. The levels of APC and coliform in the soil culture farms were 1.0-6.9 and 0.4-4.6 log CFU/g (leaf, mL, hand or 100 $cm^2$), respectively. The samples obtained from the nutriculture farms were contaminated with the levels of 0.8-4.9, and 0.2-2.6 log CFU/g (leaf, mL, hand or 100 $cm^2$) of APC and coliform. However, E. coli was not detected in any samples. In major foodborne pathogens, S. aureus was detected at the level of ${\leq}$3.3 log CFU/hand in workers' hand samples and B. cereus was detected at the levels of 0.4-4.1 log CFU/g (hand or 100 $cm^2$) in soil, plants and workers' hygiene. L. monocytogenes, E. coli O157:H7 and Salmonella spp. were not detected. Fungi were detected at the levels of 1.0-5.2 and 0.2-4.4 log CFU/g (leaf, mL, hand or 100 $cm^2$) in soil culture and nutriculture farms, respectively.

Effects of Small Scale Post-Harvest Facility and Hygiene Education on the Level of Microbial Safety in Korean Leeks Production (영양부추 생산농가의 소규모 수확후 처리시설 적용과 위생교육에 따른 미생물학적 안전성 향상 효과)

  • Kim, Se-Ri;Kim, Jin-Bae;Lee, Hyo-Sup;Lee, Eun-Sun;Kim, Won-Il;Ryu, Song-Hee;Ha, Jihyung;Kim, Hwang-Yong;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • The purposes of this study were to develop a small scale post-harvest facility, and consequently to evaluate the effects of applying the facility along with hygiene education on the level of microbial safety in Korean leeks production. A total of 135 samples were collected at three Korean leeks farms in Yangju, Gyeonggi province. Food safety indicators (Aerobic plate count (APC), coliform count, and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) on/in the samples were assessed. The microbial load measured as APC with harvesting tools such as comb, chopping board, and knife, at the farms where the small scale post-harvest facility had been operated (Farms A and B) was lower than that at another farm having no post-harvest facility (Farm C) by 1.44~2.33 log CFU / $100cm^2$. Moreover, the chopping board from Farm C was observed being contaminated with B. cereus at 6.03 log CFU / $100cm^2$. The coliform counts from the samples increased by 0.57~1.89 log CFU/g after leeks was submerged in ground water for washing. E. coli was recovered from leeks, soil, and the ground water used in the washing process, while no E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. Our results indicated that the small scale post-harvest facility developed in this study as well as the hygiene education played an important role in enhancing the level of microbial food safety in the leeks production environment. However, a disinfection technique could be needed during the washing step in order to prevent a potential contamination.

Microbial Hazard Analysis of Manufacturing Processes for Starch Noodle (당면의 제조공정별 미생물학적 위해요소 분석)

  • Cheon, Jin-Young;Yang, Ji Hye;Kim, Min Jeong;Lee, Su-Mi;Cha, Myeonghwa;Park, Ki-Hwan;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • The purpose of this study was to identify control points through microbiological hazard analysis in the manufacturing processes of starch noodles. Samples were collected from the ingredients, manufacturing processes, equipment and environment. Microbiological hazard assessments were performed using aerobic plate counts (APC), Enterobacteriaceae (EB), E. coli and five pathogens including B. cereus, E. coli O157:H7, L. monocytogenes, Salmonella spp., and S. aureus. The APC levels in raw materials were from 2.12 to 3.83 log CFU/g. The contamination levels after kneading were 4.31 log CFU/g for APCs and 2.88 log CFU/g for EB counts. APCs decreased to 1.63 log CFU/g and EB were not detected after gelatinization, but their levels slightly increased upon cooling, cutting, ripening, freezing, thawing, and separating. The reuse of cooling and coating water would be a critical source of microbial increase after cooling. After drying, APCs and EB counts decreased to 5.05 log CFU/g and 2.74 log CFU/g, respectively, and the levels were maintained to final products. These results suggest that the cooling process is a critical control point for microbiological safety, and the cooling water should be treated and controlled to prevent cross contamination by pre-requisite program.

Microbiological Hazard Analysis of Hot Pepper Farms for the Application of Good Agricultural Practices (GAP) System (농산물우수관리제도 (GAP) 적용을 위한 고추농가의 미생물학적 위해도 평가)

  • Nam, Min-ji;Heo, Rok-Won;Lee, Won-Gyeong;Kim, Kyeong-Yeol;Chung, Do-Yeong;Kim, Jeong-Sook;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.163-173
    • /
    • 2011
  • The objective of this study was to determine microbiological risk factors in hot pepper farms for the application of good agricultural practices (GAP). Samples were collected from cultivation environments and utensils, plants, workers, and air at 3 hot pepper farms located in Cheongsong, Korea and were tested to detect sanitary indications [aerobic plate bacteria (APC), coliform, and Escherichia coli], foodborne pathogens, and fungi. APC, coliform, and fungi were detected at the levels of 0.7~6.2, 0.2~4.7, and 0.4~4.3 log CFU, respectively, in the three farms. Four (4.4%; l leaf, l irrigation water, and 2 soil) of 90 samples collected were revealed to be E. coli positives. For foodborne pathogens, Staphylococcus aureus was only detected at $1.0log\;CFU/100cm^2$ in the worker's cloth of B farm, and Bacillus cereus was detected at the levels 1.0~2.5 log CFU in the cultivation environments and utensils and worker of B and C farms. However, other pathogens were not detected. The results demonstrated potential microbiological risks for hot pepper cultivated in the farms. Therefore, a management system to minimize the microbial risk such as GAP is required to ensure the safety of hot pepper.