• Title/Summary/Keyword: ANSYS

Search Result 2,203, Processing Time 0.03 seconds

THE EFFECT OF RESTORATIVE MATERIALS ON THE STRESS DISTRIBUTION OF CLASS V COMPOSITE RESIN RESTORATIONS - A 3D FINITE ELEMENT INVESTIGATION (수복재료가 5급 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원유한요소법적 연구)

  • Ahn, Hyoung-Ryoul;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.20-29
    • /
    • 2006
  • The purpose of this study was to analyze the stress distribution aspect of unrestored and restored combined shape (wedge shape occulusally and saucer shape gingivally) class V cavity, which found frequently in clinical cases. A maxillary second permolar restored with a combined shape class V composite restorations were modeled using the three dimensional finite element method. Static occlusal load of 170 N was applied on lingual incline of buccal cusp at the angle of $45^{\circ}$ with the longitudinal axis of the tooth. And three dimensional finite element analysis was taken by ANSYS (Version 6.0, Swanson Analysis System Co., Houston, U.S.A) program which represent the stress distribution on unrestored and restored cavity wall and margin. The conclusions were as follows. 1. Compared to the unrestored cavity, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced and in restored cavity. 2. Von Mises stress at the occlusal and cervical cavity margin and wall were increased in restored cavity in comparison with the unrestored cavity. 3. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced more than in the flowable restoration. 4. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the occlusal and cervical cavity margin and wall were increased more than in the flowable restoration.

Effects of occlusal load on the stress distribution of four cavity configurations of noncarious cervical lesions: A three-dimensional finite element analysis study (네 가지 형태의 비우식성 치경부 병소의 3차원 유한요소법적 응력분석)

  • Jeon, Sang-Je;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.359-370
    • /
    • 2006
  • The objective of this study was to investigate the effect of excessive occlusal loading on stress distribution on four type of cervical lesion, using a three dimensional finite element analysis (3D FEA). The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. Four different lesion configurations representative of the various types observed clinically for teeth were studied. A static point load of 500N was applied to the buccal and lingual cusp (Load A and B). The principal stresses in lesion apex, and vertical sectioned margin of cervical wall were analyzed. The results were as follows 1. The patterns of stress distribution were similar but the magnitude was different in four types of lesion 2. The peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 3. The compressive stress under load A and the tensile stress under load B were dominant stress. 4. Under the load, lesion can be increased and harmful to tooth structure unless restored.

FINITE ELEMENT ANALYSIS OF WIDE DIAMETER SCREW IMPLANT PLACED INTO REGENERATED BONE (재생된 골에 식립한 넓은 직경의 나사형 임플란트에 대한 유한요소법적 분석)

  • Kim, Su-Gwan;Kim, Jae-Duk;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.248-254
    • /
    • 2005
  • The purpose of this study was to investigate the distribution of stress within the regenerated bone surrounding the implant using three dimensional finite element stress analysis method. Using ANSYS software revision 6.0 (IronCAD LLC, USA), a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The $5.0{\times}11.5-mm$ screw implant (3i, USA) was used for this study, and was assumed to be 100% osseointegrated. And it was restored with gold crown with resin filling at the central fossa area. The implant was surrounded by the regenerated type IV bone, with 4 mm in width and 7 mm apical to the platform of implant in length. And the regenerated bone was surrounded by type I, type II, and type III bone, respectively. The present study used a fine grid model incorporating elements between 250,820 and 352,494 and nodal points between 47,978 and 67,471. A load of 200N was applied at the 3 points on occlusal surfaces of the restoration, the central fossa, outside point of the central fossa with resin filling into screw hole, and the functional cusp, at a 0 degree angle to the vertical axis of the implant, respectively. The results were as follows: 1. The stress distribution in the regenerated bone-implant interface was highly dependent on both the density of the native bone surrounding the regenerated bone and the loading point. 2. A load of 200N at the buccal cusp produced 5-fold increase in the stress concentration at the neck of the implant and apex of regenerated bone irrespective of surrounding bone density compared to a load of 200N at the central fossa. 3. It was found that stress was more homogeneously distributed along the side of implant when the implant was surrounded by both regenerated bone and native type III bone. In summary, these data indicate that concentration of stress on the implant-regenerated bone interface depends on both the native bone quality surrounding the regenerated bone adjacent to implant and the load direction applied on the prosthesis.

Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis (비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가)

  • Lee, Eun-Haeng;Kim, Jae-Min;Jung, Du-Ri;Joo, Kwang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.499-512
    • /
    • 2016
  • The boundary reaction method(BRM) is a substructure time domain method, it removes global iterations between frequency and time domain analyses commonly required in the hybrid approaches, so that it operates as a two-step uncoupled method. The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. In the time domain analysis, the near-field soil is modeled to simulate the wave radiation problem. This paper evaluates the performance of the BRM according to modeling extent of near-field soil for the nonlinear SSI analysis of base-isolated NPP structure. For this purpose, parametric studies are performed using equivalent linear SSI problems. The accuracy of the BRM solution is evaluated by comparing the BRM solution with that of conventional SSI seismic technique. The numerical results show that the soil condition affects the modeling range of near-field soil for the BRM analysis as well as the size of the basemat. Finally, the BRM is applied for the nonlinear SSI analysis of a base-isolated NPP structure to demonstrate the accuracy and effectiveness of the method.

A Study on the Ultimate Strength Behavior for Ship Perforated Stiffened Plate (선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Lee Jun-Kyo;Park Joo-Shin;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.141-146
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc. Because cutout's existence grow up in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, and, reasonable buckling strength about perforated stiffened plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method.

  • PDF

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

Analysis of 6-Beam Accelerometer Using (111) Silicon Wafer by Finite Element Method ((111) 실리콘 웨이퍼를 이용한 6빔 가속도센서의 유한요소법 해석)

  • Sim, Jun-Hwan;Kim, Dong-Kwon;Seo, Chang-Taeg;Yu, In-Sik;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.346-355
    • /
    • 1997
  • In this paper, the analyses of the stress disturibution and frequency characteristics of silicon microstructures for an accelerometer were performed using the general purpose finite element simulation program, ANSYS. From the analyses, we determined the parameter values of a new 6-beam piezoresistive accelerometer applicable to the accelerometer's specification in airbag system of automobile. Then, the mass paddle radius, beam length, beam width, and beam thickness of the designed accelerometer were$500{\mu}m$, $350{\mu}m$, $100{\mu}m$, and $5{\mu}m$, respectively and two different seismic masses with 0.4 mg and 0.8 mg were defined on the same sensor structure. The designed 6- beam accelerometers were fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon substrates and the characteristics of the fabricated accelerometers were investigated. Then, we used a micromachining technique using porous silicon etching method for the formation of the micromechanical structure of the accelerometer.

  • PDF

A Study on the Estimation of Roll Motion in Large Scale LNG Ships (대형 LNG 선박의 롤 선체운동 추정에 관한 연구)

  • Song, Jaeyoung;Lee, Chun-Ki;Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.145-150
    • /
    • 2020
  • The ship motion of large LNG ships affects ships' safety. The purpose of this study was to estimate the transfer function of roll motion among the hull motion of 153,000 m3 class LNG vessels. The ship motion transfer function was modeled using a Linear Time-Invarient system with single input, single output, and transfer function. The transfer function of the ship motion was estimated by the system identification method using single ocean wave as input of the model, and using the roll motion of the LNG ship obtained through ANSYS as the output of the model. The usefulness of the experimental results was evaluated using the precision and estimation rate of the model for cases wherein the different transfer function dimensions. Results of the experiment showed a precision at 99% and 98%, with estimation rate at 78% and 50%. From these results, we found the proposed method of estimating the transfer function of ship motion in this study reasonable. In the future, data of ship motion in actual sea conditions will be acquired and it will be applied to make the construction of models with multiple inputs and multiple outputs for practical use.

A Study on the Equations for Load Carrying Capacities of Concrete Filled tubular Square Column-to-Beam Connections with Combined Cross Diaphragm and Sleeves (복합십자형 CFT 기둥-보 접합부의 내력식에 관한 연구)

  • Choi, Sung Mo;Jung, Do Sub;Kim, Dae Joong;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.419-429
    • /
    • 2005
  • The objective of this study is to clarify the structural features of members consisting of a connection, as part of the previous study on the CFT column-to-beam tensile connection with a combined cross diaphragm. This connection has the following merits: it evenly distributes the stress on the beam flange and the diaphragm and reduces the stress concentration by improving the stress transfer route and restraining the abrupt deformation of the diaphragm. Finite element analysis was performed to find out the stress transfer through the sleeve, which is an important member of the connection with a combined cross diaphragm. The length and thickness of the sleeve were used as variables for the analysis. The analysis results showed that the length and thickness of the sleeve did not influence the capacity of the connection and played the role of a medium for the transfer of the stress from the diaphragm to the filled concrete. It was proposed that the appropriate length of the sleeve have the same value as the diameter of the sleeve and that the appropriate ratio of the sleeve diameter to the sleeve thickness be 20. Two equations for the evaluation of the load carrying the capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.