DOI QR코드

DOI QR Code

Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis

비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가

  • Lee, Eun-Haeng (Department of Civil and Environmental Engineering, Chonnam National Univ.) ;
  • Kim, Jae-Min (Department of Marine and Civil Engineering, Chonnam National Univ.) ;
  • Jung, Du-Ri (Department of Civil and Environmental Engineering, Chonnam National Univ.) ;
  • Joo, Kwang-Ho (Central Research Institute of KHNP)
  • 이은행 (전남대학교 건설환경공학과) ;
  • 김재민 (전남대학교 해양토목공학과) ;
  • 정두리 (전남대학교 건설환경공학과) ;
  • 주광호 (한국수력원자력 중앙연구원)
  • Received : 2016.08.29
  • Accepted : 2016.10.13
  • Published : 2016.12.30

Abstract

The boundary reaction method(BRM) is a substructure time domain method, it removes global iterations between frequency and time domain analyses commonly required in the hybrid approaches, so that it operates as a two-step uncoupled method. The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. In the time domain analysis, the near-field soil is modeled to simulate the wave radiation problem. This paper evaluates the performance of the BRM according to modeling extent of near-field soil for the nonlinear SSI analysis of base-isolated NPP structure. For this purpose, parametric studies are performed using equivalent linear SSI problems. The accuracy of the BRM solution is evaluated by comparing the BRM solution with that of conventional SSI seismic technique. The numerical results show that the soil condition affects the modeling range of near-field soil for the BRM analysis as well as the size of the basemat. Finally, the BRM is applied for the nonlinear SSI analysis of a base-isolated NPP structure to demonstrate the accuracy and effectiveness of the method.

경계반력법은 일반적인 복합법에서 필요한 진동수영역과 시간영역의 반복 작업이 필요없는 두 단계의 시간수영역 부구조법이다. 경계반력법은 다음의 두 단계로 나누어진다: (1) 진동수영역에서 선형구간과 비선형구간 경계에서 경계반력계산, (2) 시간영역에서 경계반력을 이용한 파동방사형문제 해석. 이때 시간영역에서는 파동방사형문제를 모사하기 위해 근역지반을 모델링한다. 이 연구에서는 면진원전구조물의 비선형 SSI 해석을 위한 BRM 해석의 근역지반 모델링 범위에 따른 응답을 평가하였다. 이를 위해 등가선형 SSI 문제를 이용하여 매개변수해석을 수행하였다. BRM 응답의 정확성을 평가하기 위해 BRM 응답은 재래의 SSI 해석의 응답과 비교하였다. 수치해석결과 BRM 해석을 위한 근역지반 모델링 범위는 기초의 크기뿐만 아니라 지반조건의 영향을 받았다. 마지막으로, BRM 해석을 면진원전구조물의 비선형 SSI 해석에 적용하므로 BRM의 정확성과 효율성을 입증하였다.

Keywords

References

  1. ANSYS Version 16.0. www.ansys.com
  2. ASCE 4-16 Draft. (2016) Seismic Analysis of Safety-Related Nuclear Structures and Commentary, ASCE.
  3. Basu, U. (2009) Explicit Finite Element Perfectly Matched Layer for Transient Three-Dimensional Elastic Waves, Int. J. Numer. Meth. Eng., 77, pp.151-176. https://doi.org/10.1002/nme.2397
  4. Bielak, J., Loukakis, K., Hisada, Y., Yoshimura, C. (2003) Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: theory, Bull. Seismol. Soc. Am., 93(2), pp.817-824. https://doi.org/10.1785/0120010251
  5. Deeks, A.J., Randolph, M.F. (1994) Axisymmetric Time Domain Transmitting Boundaries, J. Eng. Mech., ASCE, 120(1), pp.25-42. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(25)
  6. EduPro Civil Systems. ProShake User's Manual : Ground Response Analysis Program, Version 1.1.
  7. Han, S.R., Nam, M.J., Seo, C.G., Lee, S.H. (2015) Soil-Structure Interaction Analysisfor Base- Isolated Nuclear Power Plants Using an Iterative Approach, Earthq. Eng. Soc. Korea, 19(1), pp.21-28. https://doi.org/10.5000/EESK.2015.19.1.021
  8. Kellezi, L. (2000) Local Transmitting Boundaries for Transient Elastic Analysis, Soil Dyn. & Earthq. Eng., 19, pp.533-547. https://doi.org/10.1016/S0267-7261(00)00029-4
  9. Kim, J.M., Lee, E.H. (2013) Boundary Reaction Method for Nonlinear Soil-Structure Interaction Analysis, Proceeding KSCE Conference.
  10. Kim, J.M., Lee, E.H., Lee, S.H. (2016) Boundary Reaction Method for Nonlinear Analysis of Soil-Structure Interaction under Earthquake Loads, Soil Dyn. & Earthq. Eng., 89, pp.85-90. https://doi.org/10.1016/j.soildyn.2016.07.020
  11. Lee, G.H., Hong, K.Y., Lee, E.H., Kim, J.M. (2014) Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method, J. Comput. Struct. Eng. Inst. Korea, 27(2), pp.95-102. https://doi.org/10.7734/COSEIK.2014.27.2.95
  12. Lee, J.H., Kim, J.H., Kim, J.K. (2016) Perfectly Matched Discrete Layers for Three-Dimensional Nonlinear Soil-Structure Interaction Analysis, Comput. & Struct., 165, pp.34-47. https://doi.org/10.1016/j.compstruc.2015.12.004
  13. Li, P., Song, E.X. (2014) A Viscous-Spring Transmitting Boundary for Cylindrical Wave Propagation in Saturated Poroelastic Media, Soil Dyn. & Earthq. Eng., 65, pp.269-283. https://doi.org/10.1016/j.soildyn.2014.06.022
  14. Liu, J., Gu, Y., Wang, Y., Li, B. (2006) Efficient Procedure for Seismic Analysis of Soil-Structure Interaction System, Tsinghua Sci. & Tech., 11, pp.625-631. https://doi.org/10.1016/S1007-0214(06)70244-9
  15. Liu, J., Lu, Y. (1998) A Direct Method for Analysis of Dynamic Soil-Structure Interaction Based on Interface Idea, Dev. Geotech. Eng., 83 - Dynamic Soil-Structure Interaction, pp.261-276.
  16. Lysmer, J., Tabatabaie-Raissi M., Tajirian, F., Vahdani, S., Ostadan, F. (1988) SASSI: A System for Analysis of Soil-Structure Interaction-User's Manual. University of California, Berkeley, CA.
  17. Seo, C.G., Kim, J.M. (2012) KIESSI Program for 3-D Soil-Structure Interaction Analysis, Comput. Struct. Eng., 25(3), pp.77-83.
  18. Wolf, J.P. (1985) Dynamic Soil-Structure Interaction Analysis, Prentice-Hall.