• Title/Summary/Keyword: ANSW

Search Result 15, Processing Time 0.02 seconds

Comparison of EWMA and CUSUM Charts with Variable Sampling Intervals for Monitoring Variance-Covariance Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.13 no.4
    • /
    • pp.152-157
    • /
    • 2020
  • To monitor all elements simultaneously of variance-covariance matrix Σ of several correlated quality characteristics under multivariate normal process Np($\underline{\mu}$, Σ), multivariate exponentially weighted moving average (EWMA) chart and cumulative sum (CUSUM) chart are considered and compared. Numerical performances of the considered variable sampling interval (VSI) charts are evaluated using average run length (ARL), average time to signal (ATS), average number of switches (ANSW) to signal, and the probability of switch Pr(switch) between two sampling interval d1 and d2 where d1 < d2. For small or moderate changes of Σ, the performances of multivariate EWMA chart is approximately equivalent to that of multivariate CUSUM chart.

Switching performances of multivarite VSI chart for simultaneous monitoring correlation coefficients of related quality variables

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.451-459
    • /
    • 2017
  • There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.

Comparison of the Efficiencies of Variable Sampling Intervals Charts for Simultaneous Monitoring the means of multivariate Quality Variables

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • When the linear correlation of the quality variables are considerably high, multivariate control charts may be a more effective way than univariate charts which operate quality variables and process parameters individually. Performances and efficiencies of the multivariate control charts under multivariate normal process has been considered. Some numerical results are presented under small scale of the shifts in the process to see the improvement of the efficiency of EWMA chart and CUSUM chart, which use past quality information, comparing to Shewart chart, which do not use quality information. We can know that the decision of the optimum value of the smoothing constant in EWMA structure or the reference value in CUSUM structure are very important whether we adopt combine-accumulate technique or accumulate-combine technique under the given condition of process.

Performances of VSI Multivariate Control Charts with Accumulate-Combine Approach

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.973-982
    • /
    • 2006
  • Performances of variable sampling interval(VSI) multivariate control charts with accumulate-combine approach for monitoring mean vector of p related quality variables were investigated. Shewhart control chart is also proposed to compare the performances of CUSUM and EWMA charts. Numerical comparisons show that performances of CUSUM and EWMA charts are more efficient than Shewhart chart for small or moderate shifts, and VSI chart is more efficient than fixed sampling interval(FSI) chart. We also found that performances of the CUSUM or EWMA chart with accumulate-combine approach are substantially efficient than those of Shewhart chart.

  • PDF

Combined VSI EWMA Chart with Accumulate-Combine Method for Moderate or Small Shifts

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In a multivariate normal production process Np(µ,Σ), a chart combining three EWMA charts with accumulate-combine method for µ, variance components of Σ, and off-diagonal elements of Σ, into a EWMA (exponentially weighted moving average) chart is considered, which is called a combined EWMA chart. Through simulation work, the proposed combined EWMA chart's numerical performance and properties are examined. The simulation results show that the proposed combined EWMA chart, which is simultaneously monitoring all the process parameters of multivariate normal production process, works effectively in the perspective of means, variances and correlation coefficients. In addition, the combined EWMA chart is extended to VSI chart.