• 제목/요약/키워드: ANN model

검색결과 838건 처리시간 0.026초

Application of Artificial Neural Network to Predict the Tensile Properties of Dual-Phase Steels

  • Seung-Hyeok Shin;Sang-Gyu Kim;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • 제66권3호
    • /
    • pp.719-723
    • /
    • 2021
  • An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloying elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship between alloying elements, microstructural factors, and tensile properties in dual-phase steels.

Prediction of Dissolved Oxygen at Anyang-stream using XG-Boost and Artificial Neural Networks

  • Keun Young Lee;Bomchul Kim;Gwanghyun Jo
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2024
  • Dissolved oxygen (DO) is an important factor in ecosystems. However, the analysis of DO is frequently rather complicated because of the nonlinear phenomenon of the river system. Therefore, a convenient model-free algorithm for DO variable is required. In this study, a data-driven algorithm for predicting DO was developed by combining XGBoost and an artificial neural network (ANN), called ANN-XGB. To train the model, two years of ecosystem data were collected in Anyang, Seoul using the Troll 9500 model. One advantage of the proposed algorithm is its ability to capture abrupt changes in climate-related features that arise from sudden events. Moreover, our algorithm can provide a feature importance analysis owing to the use of XGBoost. The results obtained using the ANN-XGB algorithm were compared with those obtained using the ANN algorithm in the Results Section. The predictions made by ANN-XGB were mostly in closer agreement with the measured DO values in the river than those made by the ANN.

인공신경망을 활용한 최적 사출성형조건 예측에 관한 연구 (A Study on the Prediction of Optimized Injection Molding Condition using Artificial Neural Network (ANN))

  • 양동철;이준한;윤경환;김종선
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.218-228
    • /
    • 2020
  • The prediction of final mass and optimized process conditions of injection molded products using Artificial Neural Network (ANN) were demonstrated. The ANN was modeled with 10 input parameters and one output parameter (mass). The input parameters, i.e.; melt temperature, mold temperature, injection speed, packing pressure, packing time, cooling time, back pressure, plastification speed, V/P switchover, and suck back were selected. To generate training data for the ANN model, 77 experiments based on the combination of orthogonal sampling and random sampling were performed. The collected training data were normalized to eliminate scale differences between factors to improve the prediction performance of the ANN model. Grid search and random search method were used to find the optimized hyper-parameter of the ANN model. After the training of ANN model, optimized process conditions that satisfied the target mass of 41.14 g were predicted. The predicted process conditions were verified through actual injection molding experiments. Through the verification, it was found that the average deviation in the optimized conditions was 0.15±0.07 g. This value confirms that our proposed procedure can successfully predict the optimized process conditions for the target mass of injection molded products.

인공신경망을 통한 사출 성형조건의 최적화 예측 및 특성 선택에 관한 연구 (A study on the prediction of optimized injection molding conditions and the feature selection using the Artificial Neural Network(ANN))

  • 양동철;김종선
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.50-57
    • /
    • 2022
  • The qualities of the products produced by injection molding are strongly influenced by the process variables of the injection molding machine set by the engineer. It is very difficult to predict the qualities of the injection molded product considering the stochastic nature of the manufacturing process, since the processing conditions have a complex impact on the quality of the injection molded product. It is recognized that the artificial neural network(ANN) is capable of mapping the intricate relationship between the input and output variables very accurately, therefore, many studies are being conducted to predict the relationship between the results of the product and the process variables using ANN. However in the condition of a small number of data sets, the predicting performance and robustness of the ANN model could be reduced due to too many input variables. In the present study, the ANN model that predicts the length of the injection molded product for multiple combinations of process variables was developed. And the accuracy of each ANN model was compared for 8 process variables and 4 important process inputs that were determined by the feature selection. Based on the comparison, it was verified that the performance of the ANN model increased when only 4 important variables were applied.

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

ANN 및 SVM을 사용하여 투과 유량을 예측하는 동적 막 여과 공정 모델링 (Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux)

  • 수피안 라데그;모하메드 무사우이;마마르 라이디;나지 물라이-모스테파
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.34-45
    • /
    • 2023
  • 본 연구에서는 투과 유량 모델을 개발하기 위하여, 시간, 막 전후의 압력 차, 회전 속도, 막의 기공 크기, 동점도, 농도 및 공급 유체의 밀도 등 7개의 입력 변수에 기반한 두 종류(ANN 및 SVM) 인공지능 기법을 이용하였다. 시행착오법과 실험데이터와 예측 데이터 간의 결정 계수(R2) 와 평균절대상대편차(AARD)를 포함한 두 가지 통계 변수를 통해 최적의 모델을 선정하였다. 최종적으로 얻어진 결과에서 최적화된 ANN 모델이 R2 = 0.999 및 AARD% = 2.245인 투과 플럭스 예측 정확도를 보여서, R2 = 0.996 및 AARD% = 4.09의 정확도를 보인 SVM 모델에 비해 더 정확함을 알 수 있었다. 또한, ANN 모델은 SVM 방식에 비해 투과 유속을 예측하는 능력도 더 높은 것으로 나타났다.

태양광 에너지 예측을 위한 SVM 및 ANN 모델의 성능 비교 (Performance comparison of SVM and ANN models for solar energy prediction)

  • 정원석;정영화;박문규;이창교;서정욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.626-628
    • /
    • 2018
  • 본 논문에서 기상 데이터를 사용하여 태양광 에너지를 예측하기 위해 기계학습 모델인 SVM(Support Vector Machine)과 ANN(Artificial Neural Network)의 성능을 비교한다. 장 단파 복사선 평균, 강수량, 온도 등 15가지 종류의 기상 데이터를 사용하여 두 모델을 생성하고, 실험을 통해 최적의 SVM의 RBF(Radial Basis Function) 파라미터와 ANN의 은닉층과 노드 개수, 정규화 파라미터를 도출하였다. SVM과 ANN 모델의 성능을 비교하기 위한 지표로서 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용하였다. 실험 결과 SVM 모델은 MAPE=21.11, MAE=2281417.65의 성능을 달성하였고 ANN은 MAPE=19.54, MAE=2155345.10776의 성능을 달성하였다.

  • PDF

인공 신경망 모형을 활용한 저수지 군의 연계운영 기준 수립 (Development of Operating Guidelines of a Multi-reservoir System Using an Artificial Neural Network Model)

  • 나미숙;김재희;김승권
    • 산업공학
    • /
    • 제23권4호
    • /
    • pp.311-318
    • /
    • 2010
  • In the daily multi-reservoir operating problem, monthly storage targets can be used as principal operational guidelines. In this study, we tested the use of a simple back-propagation Artificial Neural Network (ANN) model to derive monthly storage guideline for daily Coordinated Multi-reservoir Operating Model (CoMOM) of the Han-River basin. This approach is based on the belief that the optimum solution of the daily CoMOM has a good performance, and the ANN model trained with the results of daily CoMOM would produce effective monthly operating guidelines. The optimum results of daily CoMOM is used as the training set for the back-propagation ANN model, which is designed to derive monthly reservoir storage targets in the basin. For the input patterns of the ANN model, we adopted the ratios of initial storage of each dam to the storage of Paldang dam, ratios of monthly expected inflow of each dam to the total inflow of the whole basin, ratios of monthly demand at each dam to the total demand of the whole basin, ratio of total storage of the whole basin to the active storage of Paldang dam, and the ratio of total inflow of the whole basin to the active storage of the whole basin. And the output pattern of ANN model is the optimal final storages that are generated by the daily CoMOM. Then, we analyzed the performance of the ANN model by using a real-time simulation procedure for the multi-reservoir system of the Han-river basin, assuming that historical inflows from October 1st, 2004 to June 30th, 2007 (except July, August, September) were occurred. The simulation results showed that by utilizing the monthly storage target provided by the ANN model, we could reduce the spillages, increase hydropower generation, and secure more water at the end of the planning horizon compared to the historical records.

Prediction of creep in concrete using genetic programming hybridized with ANN

  • Hodhod, Osama A.;Said, Tamer E.;Ataya, Abdulaziz M.
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.513-523
    • /
    • 2018
  • Time dependent strain due to creep is a significant factor in structural design. Multi-gene genetic programming (MGGP) and artificial neural network (ANN) are used to develop two models for prediction of creep compliance in concrete. The first model was developed by MGGP technique and the second model by hybridized MGGP-ANN. In the MGGP-ANN, the ANN is working in parallel with MGGP to predict errors in MGGP model. A total of 187 experimental data sets that contain 4242 data points are filtered from the NU-ITI database. These data are used in developing the MGGP and MGGP-ANN models. These models contain six input variables which are: average compressive strength at 28 days, relative humidity, volume to surface ratio, cement type, age at start of loading and age at the creep measurement. Practical equation based on MGGP was developed. A parametric study carried out with a group of hypothetical data generated among the range of data used to check the generalization ability of MGGP and MGGP-ANN models. To confirm validity of MGGP and MGGP-ANN models; two creep prediction code models (ACI209 and CEB), two empirical models (B3 and GL 2000) are used to compare their results with NU-ITI database.