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1. Introduction 1)

To provide higher separation quality with lower 
maintenance costs and easier operational control, mem-
brane filtration techniques, particularly with rotating 

disk membrane (RDM) filtration systems, were com-
monly employed[1,2]. However, the performance of 
such a process is significantly affected by the fouling 
due to the cake build-up on the surface or in the pores 
of the membrane caused by the effluent disposal[3,4]. 
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요   약: 본 연구에서는 투과 유량 모델을 개발하기 위하여, 시간, 막 전후의 압력 차, 회전 속도, 막의 기공 크기, 동점도,
농도 및 공급 유체의 밀도 등 7개의 입력 변수에 기반한 두 종류(ANN 및 SVM) 인공지능 기법을 이용하였다. 시행착오법과
실험데이터와 예측 데이터 간의 결정 계수(R2) 와 평균절대상대편차(AARD)를 포함한 두 가지 통계 변수를 통해 최적의 모델
을 선정하였다. 최종적으로 얻어진 결과에서 최적화된 ANN 모델이 R2 = 0.999 및 AARD% = 2.245인 투과 플럭스 예측 정
확도를 보여서, R2 = 0.996 및 AARD% = 4.09의 정확도를 보인 SVM 모델에 비해 더 정확함을 알 수 있었다. 또한, ANN
모델은 SVM 방식에 비해 투과 유속을 예측하는 능력도 더 높은 것으로 나타났다.

Abstract: Two computational intelligence techniques namely artificial neural networks (ANN) and support vector ma-
chine (SVM) are employed to model the permeate flux based on seven input variables including time, transmembrane pres-
sure, rotating velocity, the pore diameter of the membrane, dynamic viscosity, concentration and density of the feed fluid. 
The best-fit model was selected through the trial-error method and the two statistical parameters including the coefficient of 
determination (R2) and the average absolute relative deviation (AARD) between the experimental and predicted data. The 
obtained results reveal that the optimized ANN model can predict the permeate flux with R2 = 0.999 and AARD% = 2.245 
versus the SVM model with R2 = 0.996 and AARD% = 4.09. Thus, the ANN model is found to predict the permeate flux 
with high accuracy in comparison to the SVM approach.
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So, the main objectives of RDM filtration are to in-
crease the shear rate and reduce the cake build-up to 
improve the permeate flux[1,5,6]. Various inves-
tigations were carried out on the use of RDM for the 
filtration of many kinds of feed fluids, such as suspen-
sion yeast[7], suspension of calcium carbonate[7,8], 
ferric hydroxide[9], and chicory juice[10,11]. In all 
cases, it was found that RDM could improve the flux 
filtration by increasing the shear that reduces booth 
concentration polarization in nanofiltration, ultra-
filtration, and cake build-up in microfiltration[5]. To 
save time and experimental cost, researchers have al-
ways tried to find an efficient way to understand the 
phenomenon without experimenting, using modeling, 
simulation tools, and collected experimental databases 
[12,13]. there are many mathematical models that have 
been developed in the literature for the purpose to 
evaluate the effects of the shear rate on membrane fil-
tration by reducing the cake accumulation on the mem-
brane surface[6,14]. Nevertheless, these models could 
not simulate the membrane flux decline accurately be-
cause of the presence of several numbers of fitting pa-
rameters related to the membrane, feed fluid and the 
quality in a membrane filtration mechanism [12]. In re-
cent years, artificial neural networks (ANN) became 
one of the most powerful modeling tools in membrane 
filtration technology[12]. In this context, several studies 
have been carried out to develop mathematical models 
to deduce the flux using prediction methods and opti-
mization algorithms[15]. To predict the flux decline 
and fouling resistance in oily wastewater treatment, 
Soleimani et al.[16] utilized ANN and GA (Genetic 
Algorithm) to optimize the operating conditions. Jawad 
et al.[17] employed ANN and MLR (Multi Linear 
Regression) to study the permeated flux in forwarding 
osmosis based on several experimental data from the 
literature with nine input parameters; they found that 
ANN is better in forming a relationship between input 
and output than MLR. Sahoo et al. [18] used genetic 
algorithms (GAs) to find the best geometry and values 
of the internal parameter of two learning algorithms of 
ANN. They used four parameters as an inlet (pH, feed 

water, particle diameters, and ionic strengths) and the 
flux decline as an outlet parameter. Bagheri et al.[19], 
in their critical review, showed the performance of ar-
tificial intelligence (AI) and machine learning in con-
trolling membrane fouling. They found that the ANN 
can predict fouling with an R2=0.99 (the error is close 
to zero). Liu et al.[20] have predicted the TMP 
(transmembrane pressure) fouling in micro-filtration of 
water treatment with the ANN approach using five 
inputs. Their results showed that there is a good agree-
ment between the ANN model and the experimental 
data. The support vector machine (SVM) is a new 
promising technique that has already showed good re-
sults in medical diagnostics, electric load prediction, 
and other domains[21]; it is a non-linear and non-
parametric regression technique. To predict the clog-
ging in a membrane bioreactor (MBR), Li and Tao[22] 
used first SA (simulated annealing algorithm) to opti-
mize the three important parameters for SVM, and 
thereafter they employed the SVM to predict fooling in 
MBR. SVM was used by Hooman Adib et al. [23] to 
simulate the fouling resistance and permeate flux de-
cline of oily wastewater in a tangential flow ultra-
filtration membrane. They used TMP, temperature, tan-
gential velocity, and pH as input variables, and per-
meation flux and fouling resistance as output variables. 
Their results obtained by SVM showed good agree-
ment with the experimental data. They discovered the 
same R2 of 0.99 for permeation flux decline and foul-
ing resistance. Kui Gao et al.[24] Employed SVM to 
predict the dead-end microfiltration membranes per-
meate flux in a batch reactor. It was considered that 
the hydraulic retention time, temperature, dissolved 
oxygen, mixed liquor suspended, hydraulic retention 
time, transmembrane pressure, and operation time all 
affected the membrane permeate flow. They have dis-
covered that the experimental data and the SVM-pre-
dicted values show excellent connections. SVM and 
ANN were utilized by Nur Sakinah Ahmad Y et al. 
[25] to model and forecast membrane fouling. They 
used experimental data gathered from the filtering of 
the palm oil mill's effluent to validate their model. 



Soufyane Ladeg⋅Mohamed Moussaoui⋅Maamar Laidi⋅Nadji Moulai-Mostefa

멤브레인, 제 33 권 제 1 호, 2023

36

They discovered that SVM is just as good at making 
precise predictions as ANN. Although many studies 
have been published on the modeling of dynamic 
membranes using ANN[16-20], there was less research 
on the use of the combination of SVM and ANN to 
model such systems. this study aimed to model the de-
crease of permeate flux in RDM using both ANN and 
SVM models. On the other hand, and because of sev-
eral experimental studies[10,26,27] that took place in 
the RDM and the existence of only a few theoretical 
models, the main objective of this research was to 
identify the best approach between ANN and SVM 
models to predict the flux decline in RDM. For this, 
the main characteristics of ANN and SVM models 
were compared and validated with the experimental re-
sults of RDM.

2. Theoretical Background

The filtrate flux ‘‘J’’ is written as: 

1 pdV
J

A dt
= (1) 

Where A is the effective membrane surface, Vp is the 
total volume of permeate flux, and t is the filtration 
time.

The local pressure on the membrane surface in the 
radial direction can be calculated as follows[8]:

2 2 2 21( ) ( )
2cP r P k r Rρ ω= + − (2)

where Pc is the peripheral pressure,  is the density of 
the fluid, k is the constant of velocity factor (0.42, 
0.84 for the disk without and with vanes, respectively) 
[13], and   is the angular velocity. The mean trans-
membrane pressure (TMP) can be found by integrating 
the local pressure over the membrane surface with re-
spect to r[28]: 

2 2 21
4cTMP p k Rρ ω= − (3)

The permeability of pure water Lp can be calculated 
from the following equation: 

p
JL

TMP
= (4)

The permeability of filtration in the case of the feed 
fluid varies with the resistance of the cake Rc:

1
( )p

m c

L
R Rμ

=
+

(5)

Where R represents the resistance of the membrane 
and μ represents the viscosity of the fluid.

The permeate flux can be deduced using Eq. 6: 

1
( )

p

m c

dVTMP QJ
R R A dt Aμ

= = =
+

(6)

In this equation, the cake resistance is not constant; 
it varies over time. therefore, the decrease in permeate 
on the RDM surface flux becomes quite difficult to 
estimate. Thus, modeling by nonlinear methods using 
ANN or SVM method could be a possible alternative 
to model the flux decline.

3. Dataset Collection

The experimental data used in this work was col-
lected from previously published works[7-11] summar-
ized in Table 1. It regroups the maximum, minimum, 
mean and standard deviation (SD) of each parameter. 
The dataset consists of 1284 data points of different 
feed fluids such as chicory juice, carbonate suspension 
yeast, and ferric hydroxide solution. The results were 
chosen under different conditions and filtration 
parameters. 



Modeling of a Dynamic Membrane Filtration Process Using ANN and SVM to Predict the Permeate Flux

Membr. J. Vol. 33, No. 1, 2023

37

4. Results and Discussion

4.1. Model performances
The performance of the developed models was eval-

uated based on three statistical parameters, which are 
the correlation determination coefficient, and the aver-
age absolute relative deviation. The mathematical defi-
nition of the previous error types, R, R2 and AARD% 
are given by Eq. 7 to Eq. 10, respectively.

(7)

( )
( )

2exp
2 1

2exp exp
1

1
ˆ

N cal
i ii

N
ii

y y
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−
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
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The average absolute-relative-deviation (AARD) is 
given by Eq. 9:

( )
exp

exp
100%

cal

n

y y
AARD

N y
−

=  (9)

where N is the number of compounds in the dataset 
for each phase (training, test, or whole dataset), ycal is 
the calculated (predicted) value of y; for the training or 
the test set, yexp is the experimental (observed) value 
of y, ŷcal represents the average of the calculated val-
ues of y, ŷexp and is the average of the experimental 

values of y.

5. Support Vector Regression

Support vector regression (SVM) is a robust tool to 
solve nonlinear regression problems. The gradient de-
scent algorithm is the most widely applied algorithm to 
select SVM parameters. For this study with the use of 
the selected seven (07) inputs, a set of 1284 points 
was taken to build the SVM model. It was developed 
by writing a script in the MATLAB environment. To 
improve the forecasting accuracy of the SVM model, a 
gradient descent algorithm was used to find the opti-
mal parameters namely the constant C (box-constraint), 
the epsilon ε, and the parameter of the kernel func-
tion or Kernel-Scale σ. The RBF, Gaussian, and poly-
nomial Kernel functions were tested to select the most 
suitable model with better statistics performances. The 
developed model is carried out by the first SVM func-
tion of MATLAB® R2019b. For this, the cross-vali-
dation “holdout” method was selected, where 70% of 
the data was used randomly for learning, and 30% for 
testing. Since there is no rule to determine the appro-
priate parameter values of the SVM model; the opti-
mized parameters were then determined using the tri-
al-and-error method during the test stage (Table 2).

Fig. 1 shows the regression analysis between the 
predicted values by SVM and the experimental per-
meate fluxes for the training, test, and global set. 
Therefore, the best SVM model can capture 99.84% of 
the variability of the permeate flux during the overall 
data set which is given in Fig. 1-c, 99.85% for the 

Variables
Data 
values

Flux
(l/h.m2)

Time 
(min)

TMP
(kPa)

Rotating 
velocity W 

(rpm)

Fluid 
concentration

(g/l)

Membrane 
pore size (µm)

Fluid 
dynamic 
viscosity 

(Pa.s)

Fluid 
density
(kg/m3)

Maximum 1397.65 360.00 129.77 2000 700.00 0.450 1.5400 2800.00
Minimum   16.57   0.22  25.62 750   3.00 0.002 0.0013 1001.07

Mean  292.60  89.58  64.01  1730.91  50.89 0.175 0.3027 1436.82
Sd  340.21  91.27  24.23   384.91 119.20 0.082 0.4561  677.52

Table 1. Max, Min, Mean and Values of Standard Deviation (SD) of Collected Base Data
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training stage (Fig. 1-a), and 99.83% for the test stage 
(Fig. 1-b). Consequently, the optimal SVM model was 
found with significant correlations during the different 
stages, which means that this model could accurately 
fit the permeate flux within the given interval of input 
variables employed through the training stage which 
corroborates the performance of the SVM model. Table 
3 summarizes the values obtained from the different 
statistical criteria and errors of the optimized SVM 
model. All the statistical criteria verify the conditions 
of acceptability (correlation close to the unit and errors 
close to zero).

6. Artificial Neural Networks

In this work, a multi-layer feed-forward back prop-
agation neural network (FFBP MLP-NN) was devel-
oped to model the permeate flux. The MLP-NN was 

trained with the Levenberg-Marquardt optimization 
algorithm. A different combination of MLP-NN param-
eters was then tested, including transfer function, num-
ber of hidden layers, and hidden neurons. 

These parameters were selected based on the tri-
al-and-error method during the test stage and based on 
the above-cited statistical parameters. As described, an 
MLP with one hidden layer is capable to map the 
non-linear relationship between dependent and in-
dependent variables. Consequently, an MLP with one 
hidden layer was adopted with seven (07) input varia-
bles and one output variable. the number of hidden 
neurons was changed from 1 to 30. Also, several 
transfer functions were tested with other parameters. 
The optimal conditions found for the best ANN model 
are summarized in Table 4.

Fig. 2 depicts the regression plots between ex-
perimental and predicted permeate fluxes using ANN 

Penalty parameter 
(c > 0)

Kernel width 
parameter “σ”

Size of the 
insensitive zone (e) kernel function Quantity of 

support vectors (n)
Loss regression 

error

100 0.1 0.0448 Radial basis 
function (rbf) 856 5.1074 10-4

    

Fig. 1. Regression analysis of the predicted and experimental permeate flux from SVM model of each stage: (a) training 
stage, (b) test stage, (c) overall data set.

Table 3. Comparison between the Results Predicted by SVM and Experimental Data

AARD% R R2

Train Test Global Train Test Global Train Test Global
0.963 4.093 2.006 0.9985 0.9983 0.9984 0.997 0.996 0.997

Table 2. Calculated Parameters of the SVM Model
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for the four stages. The obtained results indicate that 
the best model is characterized by low AARD and 
high regression coefficients. Since the correlation co-
efficients are superior to 0.99 for training, validation, 
tests, and the entire data set as shown in Fig. 2-a, Fig. 
2-b, and Fig. 2-c, the developed ANN model is effec-
tive and capable of providing the permeate flux values 
with high accuracy. Table 5 illustrates the different 

statistical errors and correlations for the four stages, 
where Fig. 3 gives a rapid comparison between ANN 
and SVM when estimating the permeate flux. From 
Fig. 3, The analysis of this figure shows that the ANN 
and SVM models have almost the same correlation co-
efficient but the ANN yields a low AARD during the 
test stage. Consequently, ANN presents the best option 
when predicting the permeate flux.

Type of 
network

Training 
Algorithm Input layer Hidden layer Output layer

FFBP NN
(newff 

MATLAB 
function)

BRBP
(trainbr 

MATLAB 
function) 

Number of 
neurons

Number of 
neurons

Transfer 
function

Number of 
neurons

Transfer 
function

07 10

Hyperbolic 
tangent sigmoid 

(tansig 
MATLAB 
function)

01

Linear 
(purelin 

MATLAB 
function)

Table 4. Structure of the optimized ANN model

           

           

Fig. 2. Regression analysis of the predicted and experimental permeate flux from ANN model of each stage: (a) Training 
stage, (b) test stage, (c) validation stage, (d) overall data set.
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Fig. 3. Comparison of correlation parameters for ANN and 
SVM models.

 

7. Comparison between Experimental and 

ANN Modeling

Another comparison between experimental (empty 
symbols) and predicted permeate flux using ANN 
(charged symbols) is accomplished and the results for 
different operating conditions are set out in Fig. 4. For 
rotating velocity of 2000 rmp and TMP of 100 kPa 
(Fig. 4-a), the experimental data fit with high accuracy 
the ANN predictions with AARD = 1.126% alongside 
the total time cycle of filtration. However, for TMP 
values of 80 kPa and 49 kPa, the AARD is equal to 
3.29 and 6.74%, respectively.

The comparison between experimental and ANN re-
sults versus time for the rotating velocity of 1500 rpm 
(Fig. 4-b) and under a TMP of 50 kPa showed a slight 
deviation in the time range of 0~300 min with a very 
acceptable AARD = 0.74%. However, for the rotating 
velocity of 1000 rpm (Fig. 4-c), the ANN predictions 
showed the best performance when modeling the flux 
in the case of TMP equal to 27 kPa with an AARD 
0.70% in comparison with the values of TMP of 50 
kPa and 80 kPa; in this case, the values of ARD are 
of 1.46% and 0.85%, respectively. From the results 
presented in Table 6, it could be noticed that the 
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Fig. 4. Flux versus time at rotating velocity (a): 2000 rpm, 
(b): 1500 rpm, (c): 1000 rpm.

ANN model showed a very acceptable accuracy with 
an AARD of 0.7% under the operating conditions (Ω 

= 1000 rpm and TMP = 27 kPa), while it presents a 
considerable deviation with a high AARD of 6.74% 

AARD% R R2

Train Test Validation Global Train Test Validation Global Train Test Validation Global
1.891 2.245 2.140 1.991 0.999 0.999 0.999 0.999 0.999 0.999 0.998 0.999

Table 5. Comparison between the Experimental Data and Predicted Values by ANN
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for Ω = 2000 rpm and TMP = 49 kPa. In the general 
case, the ANN could be used to model permeate flux 
with the mean of AARD of 1.82% in comparison to 
the SVM model (Table 6). In resemblance to previous 
literary works, Jasir Jawad et al. [17] have found using 
ANN a high R2 value of 97.3% with an error of 
16.422. R2 and the error for linear regression, on the 
other hand, are 49.3; 32.365 respectively.

8. Comparison between Experimental and 

SVM Modeling

Fig. 5 illustrates the predicted values using SVM 
(charged symbols) versus experimental values of per-
meate flux (empty symbols) for different operating 
conditions. It is shown that the SVM model followed 
accurately the trend of the experimental permeate flux 
with an AARD of 0.14% for W = 2000 rpm and TMP 
= 100 kPa, while it presents a higher deviation with an 
AARD of 9.49% for W = 1000 rpm and TMP = 279 
kPa. In comparison with other last previous work, Kui 
GAO et al.[27] have found that the error for SVM 
(3.43%) model is slightly bigger in comparison with 
ANN (2.62%). 

9. Applicability Domain

The applicability domain using the Williams plot of 
the ANN model was performed to identify the dataset 

outliers. In the Williams diagram, the standardized re-
sidual parameter (δ) is plotted versus a distance called 
leverage (hi). These two parameters (δ and hi) can be 
calculated using Eq. 10 and Eq. 11, respectively:

W
(rpm)

TMP
(KPa)

AARD (%)
ANN SVM

1000
27 0.70

1.00
9.49

7.4650 1.46 8.27
80 0.85 4.61

1500 50 0.74 0.74 2.36 2.36

2000
49 6.74

3,72
2.66

1.8880 3.29 2.85
100 1.13 0.14

MAARD(%) 1.82 3.90

Table 6. Comparison between ANN and SVM models
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Fig. 5. Flux versus time at rotating velocity (a): 2000 rpm, 
(b): 1500 rpm, (c): 1000 rpm.
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( )
( )
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1
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n
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y y
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n A

δ
=

−=
−

− −
 (10)

where yi and ŷi are the experimental and the calculated 
values for the i-th compound, respectively, A is the 
number of descriptors and n is the number of 
compounds.

The leverage value (hi) can be defined as[29]: 

( ) 1T T
i i ih x X X x

−
= (11)

where xi is the descriptor vector of the i-th compound, 
xT

i is the transpose of xi, X is the descriptor matrix and 
XT is the transpose of X. The warning leverage value 
(h*) is calculated as: 

( )3 1k
h

n
∗ +

= (12)

Where k is the number of predictor variables included 
in the model and n is the number of data points. The 
applicability domain of the ANN model is analyzed us-
ing a Williams plot (Fig. 6), where the vertical line is 
the critical leverage value (h*) and the horizontal lines 
± 3. From this Figure, it can be noticed that only 67 

points (5%) lie out of the domain and most of the 
Dataset belongs to the AD area, which is between the 
horizontal lines (limit of ± 3). This means that an 
average of 95% of the whole data set is covered.

10. Sensitivity analysis

The developed model (ANN) can potentially provide 
a good dependency between the input and output 
parameters. To investigate how the inputs affect the 
outputs, a sensitivity analysis is carried out. The most 
effective input can be recognized by the relevance fac-
tor (r), which is in the range of -1 to +1 and is stated 
by using Eq. 13 from[29]:

,1

2 2
,1 1

( )( )

( ) ( )

n
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where   is the i-th value of the k-th input vector 
with its average  ,  is the i-th output value and its 

average   and, n is the number of compounds.
The absolute value of the relevance factor has a direct 

relation with the output. As can be seen in Fig. 7, the 
permeate flux shows a straight dependency on the inputs 
(density, dp, W, viscosity, TMP and concentration), and 
an opposite dependency on time. Also, time and den-
sity are the most relevant input variables with a rele-
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Fig. 6. Williams Plot obtained by the best ANN model.
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vance factor of +0.56 and –0.14, respectively.

11. ANN Interface of Permeate Flux 

Calculation

A friendly and flexible Matlab user interface was 
designed based on the best ANN parameters (weights 
and biases) and the selected inputs to compute the per-
meate flux of the RDM (Fig. 8). This allows the user 
to make a quick and easy calculation of the permeate 
flux without knowing any details about ANN, Matlab 
software or even the physical phenomena.

Fig. 8. ANN interface of flux estimation.

12. Conclusion

This study aimed to investigate the non-linear behav-
iour of the flux decline during the filtration process of 
a rotating disk membrane using ANN and SVM ap-

proaches under different operating conditions. In this 
investigation, we determined the best ANN after trying 
different structures. The accuracy of the developed 
model depends on the regression coefficients and 
AARD% values which have been taken as criterion 
parameters. The obtained results showed that the ANN 
with the architecture of 7-10-1 led to an R2 > 0.99 and 
an AARD% average of 1.82%, whereas the SVM 
model led to an AARD average of 3.96 and nearly the 
same correlations. This confirmed that the optimal 
ANN model is more effective than the SVM approach 
at predicting the permeate flux with high accuracy. 
The applicability domain of the model was conducted 
proving that about 95% of the data set was covered. In 
addition, a convivial graphical user interface has been 
designed to facilitate the computation of the permeate 
flux by exploiting the parameters without learning 
about the phenomena. The sensitivity of the best ANN 
model has also been examined. The obtained results 
revealed that density has a strong positive effect 
against time while having a negative effect on the per-
meate flux, followed by the other inputs with nearly 
the same effect.
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Nomenclature

A: Effective membrane area (m2) 
dp: Membrane pore size (µm)
J:  Permeate flux (Lm−2h−1)
k:  Velocity factor
Lp: Pure water permeability (Lm−2h−1bar−1)
Pc: Peripheral pressure (bar)
Q: Permeate flow rate (m3h−1)
R: Coefficient of correlation
R2: Coefficient of determination

Fig. 7. Results of the sensitivity analysis performed on the 
DFO-SVR model.
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T: Filtration time (min)
ρ: Fluid density (g L−1)
µ: Fluid dynamic viscosity (Pa s)
ɷ: Angular velocity (rad s−1)
Ω: Disk rotating velocity (rpm)

Abbreviation

AARD: Average Absolute Relative Deviation
ANN:  Artificial Neural Networks
BBNN: Back-forward Backpropagation Neural 

Network
BRBP: Bayesian regularization backpropagation 

algorithm
MLR: Multi Linear Regression
RDM: Rotating Disk Membrane
SVM: Support Vector Machine
TMP: Transmembrane Pressure
WN:  Wavelet Network 
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