• Title/Summary/Keyword: ANN(Artificial Neural Networks)

Search Result 375, Processing Time 0.028 seconds

A prediction of the rock mass rating of tunnelling area using artificial neural networks (인공신경망을 이용한 터널구간의 암반분류 예측)

  • Han, Myung-Sik;Yang, In-Jae;Kim, Kwang-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.

  • PDF

Combining SWAT model with artificial neural networks for modelling a daily discharge (일 유출량 해석을 위한 SWAT 모형과 인공신경망의 연계)

  • Lee, Do-Hun;Kim, Nam-Won;Jung, Il-Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.195-195
    • /
    • 2012
  • 인공신경망 모형은 복잡하고 비선형의 입력과 출력 관계를 잘 반영할 수 있어서 유출 모델링에 널리 적용되어 왔다. 그러나 인공신경망 모형은 강우나 유역특성의 공간적 분포를 반영하는 것이 어려우며 물리적 개념이 결여되어 있는 단점이 있다. 본 연구에서는 유역특성과 물리적 개념을 반영할 수 있는 물리기반 모형과 인공신경망 모형의 장점들을 조합하여 물리기반 모형의 일 유출량 해석 능력을 향상하기 위하여 SWAT 모형과 인공신경망(ANN)을 연계하였다. SWAT-ANN 연계모형은 두 단계로 구성되어 진다. 첫 번째 단계에서는 관측 자료를 이용하여 SWAT 모형을 보정한다. 두 번째 단계에서는 첫 번째 단계에서 계산한 소유역별 SWAT 모형의 유출결과를 ANN의 입력자료로 이용하여 SWAT-ANN 연계모형을 구축한다. SCE-UA 최적화 방법을 적용하여 SWAT 모형의 매개변수들을 보정하였고, ANN 학습은 3층의 feed-forward 역전파 알고리즘에 기초한 Bayesian Regularization 방법을 적용하였다. ANN 은닉층의 뉴런 및 전달함수는 시행착오를 통하여 적절한 ANN 구조를 설정하여 SWAT-ANN 연계모형의 일유출량을 모의하였다. 여러 가지 통계적 오차기준을 이용하여 보청천 유역에서 SWAT-ANN 연계모형의 결과와 SWAT 단독 모형의 결과를 비교하였다. SWAT-ANN 연계모형이 SWAT 단독 모형보다 더 우수한 결과를 나타내어 일 유출량 해석을 위한 SWAT-ANN 연계모형의 유용성을 확인할 수 있었다.

  • PDF

A Decision Support Model for Sustainable Collaboration Level on Supply Chain Management using Support Vector Machines (Support Vector Machines을 이용한 공급사슬관리의 지속적 협업 수준에 대한 의사결정모델)

  • Lim, Se-Hun
    • Journal of Distribution Research
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2005
  • It is important to control performance and a Sustainable Collaboration (SC) for the successful Supply Chain Management (SCM). This research developed a control model which analyzed SCM performances based on a Balanced Scorecard (ESC) and an SC using Support Vector Machine (SVM). 108 specialists of an SCM completed the questionnaires. We analyzed experimental data set using SVM. This research compared the forecasting accuracy of an SCMSC through four types of SVM kernels: (1) linear, (2) polynomial (3) Radial Basis Function (REF), and (4) sigmoid kernel (linear > RBF > Sigmoid > Polynomial). Then, this study compares the prediction performance of SVM linear kernel with Artificial Neural Network. (ANN). The research findings show that using SVM linear kernel to forecast an SCMSC is the most outstanding. Thus SVM linear kernel provides a promising alternative to an SC control level. A company which pursues an SCM can use the information of an SC in the SVM model.

  • PDF

Correlation Analysis between Soil Shear Strength Parameters and Cone Index Using Artificial Neural Networks - 1 (인공신경망을 적용한 지반 전단강도정수와 콘지수 사이의 상관관계 분석 1)

  • Moon, In-Jong;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2234-2241
    • /
    • 2015
  • This study has been undertaken to develop a relationship between the shear strength coefficients and the cone index. The theoretic mathematical equations for the relationship were rigorously investigated, and then a Artificial Neural Network(ANN) analysis was adapted to enhance the reliability of the investigation. The theoretical investigation involved various assumptions resulting in the significant error involvement of geotechnical behaviors of ground. Therefore, a model using the ANN has been learned to enhance the prediction of the cone index form the shear strength parameters. Site investigation reports from various construction fields were used for ANN model learning. The results of the study show that the model predicts the cone index from the shear strength parameters of soils very well. The further study that is undertaking has a potential promise of the generalized prediction technique for the cone index from the soil parameters.

Prediction Acidity Constant of Various Benzoic Acids and Phenols in Water Using Linear and Nonlinear QSPR Models

  • Habibi Yangjeh, Aziz;Danandeh Jenagharad, Mohammad;Nooshyar, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2007-2016
    • /
    • 2005
  • An artificial neural network (ANN) is successfully presented for prediction acidity constant (pKa) of various benzoic acids and phenols with diverse chemical structures using a nonlinear quantitative structure-property relationship. A three-layered feed forward ANN with back-propagation of error was generated using six molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The polarizability term $(\pi_1)$, most positive charge of acidic hydrogen atom $(q^+)$, molecular weight (MW), most negative charge of the acidic oxygen atom $(q^-)$, the hydrogen-bond accepting ability $(\epsilon_B)$ and partial charge weighted topological electronic (PCWTE) descriptors are inputs and its output is pKa. It was found that properly selected and trained neural network with 205 compounds could fairly represent dependence of the acidity constant on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network was applied for prediction pKa values of 37 compounds in the prediction set, which were not used in the optimization procedure. Squared correlation coefficient $(R^2)$ and root mean square error (RMSE) of 0.9147 and 0.9388 for prediction set by the MLR model should be compared with the values of 0.9939 and 0.2575 by the ANN model. These improvements are due to the fact that acidity constant of benzoic acids and phenols in water shows nonlinear correlations with the molecular descriptors.

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • v.30 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

Three Stage Neural Networks for Direction of Arrival Estimation (도래각 추정을 위한 3단계 인공신경망 알고리듬)

  • Park, Sun-bae;Yoo, Do-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2020
  • Direction of arrival (DoA) estimation is a scheme of estimating the directions of targets by analyzing signals generated or reflected from the targets and is used in various fields. Artificial neural networks (ANN) is a field of machine learning that mimics the neural network of living organisms. They show good performance in pattern recognition. Although researches has been using ANNs to estimate the DoAs, there are limitationsin dealing with variations of the signal-to-noise ratio (SNR) of the target signals. In this paper, we propose a three-stage ANN algorithm for DoA estimation. The proposed algorithm can minimize the performance reduction by applying the model trained in a single SNR environment to various environments through a 'noise reduction process'. Furthermore, the scheme reduces the difficulty in learning and maintains efficiency in estimation, by employing a process of DoA shift. We compare the performance of the proposed algorithm with Cramer-Rao bound (CRB) and the performances of existing subspace-based algorithms and show that the proposed scheme exhibits better performance than other schemes in some severe environments such as low SNR environments or situations in which targets are located very close to each other.

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks (항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석)

  • Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • The aim of this study is to detect landslide using digital aerial photography and apply the landslide to landslide susceptibility mapping by artificial neural network (ANN) and geographic information system (GIS) at Jinbu area where many landslides have occurred in 2006 by typhoon Ewiniar, Bilis and Kaemi. Landslide locations were identified by visual interpretation of aerial photography taken before and after landslide occurrence, and checked in field. For landslide susceptibility mapping, maps of the topography, geology, soil, forest, lineament, and landuse were constructed from the spatial data sets. Using the factors and landslide location and artificial neural network, the relative weight for the each factors was determinated by back-propagation algorithm. As the result, the aspect and slope factor showed higher weight in 1.2-1.5 times than other factors. Then, landslide susceptibility map was drawn using the weights and finally, the map was validated by comparing with landslide locations that were not used directly in the analysis. As the validation result, the prediction accuracy showed 81.44%.

Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models (자기회귀 모델과 신경망 모델을 이용한 복잡한 지형 내 항만에서의 파고 및 하역중단 예측)

  • Yi, Jin-Hak;Ryu, Kyong-Ho;Baek, Won-Dae;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.180-188
    • /
    • 2017
  • Recently, as the strength of winds and waves increases due to the climate change, abnormal waves such as swells have been also increased, which results in the increase of downtime events of loading/unloading in a harbour. To reduce the downtime events, breakwaters were constructed in a harbour to improve the tranquility. However, it is also important and useful for efficient port operation by predicting accurately and also quickly the downtime events when the harbour operation is in a limiting condition. In this study, numerical simulations were carried out to calculate the wave conditions based on the forecasted wind data in offshore area/outside harbour and also the long-term observation was carried out to obtain the wave data in a harbour. A forecasting method was designed using an auto-regressive (AR) and artificial neural networks (ANN) models in order to establish the relationship between the wave conditions calculated by wave model (SWAN) in offshore area and observed ones in a harbour. To evaluate the applicability of the proposed method, this method was applied to predict wave heights in a harbour and to forecast the downtime events in Pohang New Harbour with highly complex topography were compared. From the verification study, it was observed that the ANN model was more accurate than the AR model.