• Title/Summary/Keyword: ANN(Artificial Neural Networks)

Search Result 375, Processing Time 0.025 seconds

Determinants of Satisfaction in the Usage of Healthcare Information Systems by Hospital Workers in Hyderabad, India: Neural Network and SEM Approach

  • Surya Neeragatti;Ranjit Kumar Dehury
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.934-956
    • /
    • 2023
  • This study focuses on the adoption of Healthcare Information System (HIS) in India's healthcare services, which has led to an increased use of HIS software for managing patient information in hospitals. The study aims to evaluate the factors that influence hospital workers' satisfaction with HIS usage and its impact on their intention to continue in the use of HIS. Primary data was collected through a survey questionnaire from 265 hospital workers. A new framework was developed, and Structural Equation Modeling (SEM) was used for analysis. Sensitivity analysis was also conducted on demographic data using an Artificial Neural Network (ANN) approach. The results indicated that all hypotheses were significant (p < 0.05). Effort expectancy was the most significant factor influencing hospital workers' satisfaction (p < 0.01). Sensitivity analysis showed that education (Model-A) and experience in use of HIS (Model-B) were the most important factors. The study contributes by proposing a new theoretical framework and extending the previous research on HIS usage satisfaction. Overall, the study highlights the importance of easiness and usefulness in predicting HIS usage satisfaction.

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

Monolith and Partition Schemes with LDA and Neural Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection

  • Ayhan Bulent;Chow Mo-Yuen;Song Myung-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Broken rotor bars in induction motors can be detected by monitoring any abnormality of the spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any misinterpretation of the signatures that are obscured by factors such as measurement noises and different load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide appropriate environments to develop such fault detection schemes because of their multi-input processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault detection with multiple signature processing, and demonstrates that multiple signature processing is more efficient than single signature processing.

High Performance Concrete Mixture Design using Artificial Neural Networks (신경망을 이용한 고성능 콘크리트의 배합설계)

  • 양승일;윤영수;이승훈;김규동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.545-550
    • /
    • 2002
  • Concrete is one of the essential structural materials in the construction. But, concrete consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructor. Therefore, concrete mixes depend on experiences of experts. However, it is more and more difficult to determine concrete mixes design by empirical means because more ingredients like mineral and chemical admixtures are included. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network are used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength and slump are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

  • PDF

Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils

  • Luat, Nguyen-Vu;Lee, Kihak;Thai, Duc-Kien
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.385-397
    • /
    • 2020
  • This paper presents an application of artificial neural networks (ANNs) in settlement prediction of a foundation on sandy soil. In order to train the ANN model, a wide experimental database about settlement of foundations acquired from available literatures was collected. The data used in the ANNs model were arranged using the following five-input parameters that covered both geometrical foundation and sandy soil properties: breadth of foundation B, length to width L/B, embedment ratio Df/B, foundation net applied pressure qnet, and average SPT blow count N. The backpropagation algorithm was implemented to develop an explicit predicting formulation. The settlement results are compared with the results of previous studies. The accuracy of the proposed formula proves that the ANNs method has a huge potential for predicting the settlement of foundations on sandy soils.

Computer Science Research Ideas Generation Using Neural Networks

  • Maghraby, Ashwag;Assaeed, Joanna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.127-130
    • /
    • 2022
  • The number of published journals, conferences, and research papers in computer science is increasing rapidly, which has led to a challenge in coming up with new and unique ideas for research. To alleviate the issue, this paper uses artificial neural networks (ANNs) to generate new computer science research ideas. It does so by using a dataset collected from IEEE published journals and conferences to train an ANN model. The results reveal that the model has a 14% success rate in generating usable ideas. The outcome of this paper has implications for helping both new and experienced researchers come up with novel research topics.

Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR

  • Beycioglu, Ahmet;Emiroglu, Mehmet;Kocak, Yilmaz;Subasi, Serkan
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • In this paper, Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) models were discussed to determine the compressive strength of clinker mortars cured for 1, 2, 7 and 28 days. In the experimental stage, 1288 mortar samples were produced from 322 different clinker specimens and compressive strength tests were performed on these samples. Chemical properties of the clinker samples were also determined. In the modeling stage, these experimental results were used to construct the models. In the models tricalcium silicate ($C_3S$), dicalcium silicate ($C_2S$), tricalcium aluminate ($C_3A$), tetracalcium alumina ferrite ($C_4AF$), blaine values, specific gravity and age of samples were used as inputs and the compressive strength of clinker samples was used as output. The approximate reasoning ability of the models compared using some statistical parameters. As a result, ANN has shown satisfying relation with experimental results and suggests an alternative approach to evaluate compressive strength estimation of clinker mortars using related inputs. Furthermore MLR model showed a poor ability to predict.

Control of Bead Geometry in GMAW (GMAW에서 비드형상제어에 관한 연구)

  • 이재범;방용우;오성원;장희석
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1997
  • In GMA welding processes, bead contour and penetration patterns are criterion to estimate weld quality. Bead geometry is commonly defined with width, height and depth. When weaving is taken into account, selection of welding conditions is known to be difficult. Thus, empirical or trial-and-error method are usually introduced. This study examined the correlation of welding process variables including weaving parameters with bead geometry using srtificial neural networks(ANN). The main task of the Ann estimator is to realize the mapping characteristics from the sampled welding process variables to the actual bead geometry through training. After the neural network model is constructed, welding process variables for desired bead geometry is selected by inverse model. Experimental varification of the inverse model is conducted through actual welding.

  • PDF

Stock Market Forecasting : Comparison between Artificial Neural Networks and Arch Models

  • Merh, Nitin
    • Journal of Information Technology Applications and Management
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.

Hierarchical neural network for damage detection using modal parameters

  • Chang, Minwoo;Kim, Jae Kwan;Lee, Joonhyeok
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.457-466
    • /
    • 2019
  • This study develops a damage detection method based on neural networks. The performance of the method is numerically and experimentally verified using a three-story shear building model. The framework is mainly composed of two hierarchical stages to identify damage location and extent using artificial neural network (ANN). The normalized damage signature index, that is a normalized ratio of the changes in the natural frequency and mode shape caused by the damage, is used to identify the damage location. The modal parameters extracted from the numerically developed structure for multiple damage scenarios are used to train the ANN. The positive alarm from the first stage of damage detection activates the second stage of ANN to assess the damage extent. The difference in mode shape vectors between the intact and damaged structures is used to determine the extent of the related damage. The entire procedure is verified using laboratory experiments. The damage is artificially modeled by replacing the column element with a narrow section, and a stochastic subspace identification method is used to identify the modal parameters. The results verify that the proposed method can accurately detect the damage location and extent.