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Monolith and Partition Schemes with LDA and Neural Networks as
Detector Units for Induction Motor Broken Rotor Bar Fault Detection

Bulent Ayhan*, Mo-Yuen Chow* and Myung-Hyun Song*

Abstract - Broken rotor bars in induction motors can be detected by monitoring any abnormality of the
spectrum amplitudes at certain frequencies in the motor current spectrum. Broken rotor bar fault
detection schemes should rely on multiple signatures in order to overcome or reduce the effect of any
misinterpretation of the signatures that are obscured by factors such as measurement noises and different
load conditions. Multiple Discriminant Analysis (MDA) and Artificial Neural Networks (ANN) provide
appropriate environments to develop such fault detection schemes because of their multi-input
processing capabilities. This paper describes two fault detection schemes for broken rotor bar fault
detection with multiple signature processing, and demonstrates that multiple signature processing is

more efficient than single signature processing.

Keywords: Induction motor, broken rotor bars, fault detection, Multiple Discriminant Analysis,
Artificial Neural Networks, Multiple signature processing.

1. Introduction

Induction motors have dominated the field of electro-
mechanical energy conversion, being 80% of the motors in
use [l]. The applications of induction motors are
widespread. Some induction motors are key elements in
assuring the continuity of the process and production chains
of many industries. A majority of induction motors are used
in electric utility industries, mining industries, petrochemical
industries, and domestic appliances industries. The list of the
industries and applications that induction motors take place
in is rather long. Induction motors are also often used in
critical applications such as nuclear plants, aerospace, and
military applications, where the reliability must be of high
standards.

Induction motors often operate in hostile environments
such as corrosive and dusty places. They are also exposed to
a variety of undesirable conditions and situations such as
misoperations. These unwanted conditions can cause the
induction motor to go into a premature failure period, which
may result in an unserviceable condition of the motor, if not
detected at its early stages of the failure period. The failure
of induction motors can result in a total loss of the machine
itself, in addition to a likely costly downtime of the whole
plant. More importantly, these failures may even result in
the loss of lives, which cannot be tolerated. Thus, health
monitoring techniques to prevent induction motor failures
are of great concern in industry and are gaining increasing
attention [2]-[3]. Rotor failures are among these failures,
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and they now account for 5-10% of total induction motor
failures[4]. Several monitoring techniques have been
developed, most of which are based on motor current
signature analysis (MCSA). In recent years, several
advanced signal processing techniques such as High
Resolution Spectral Analysis, Higher Order Statistics, and
Wavelet Analysis have been applied to broken rotor bar and
other motor fault detection problems [1].

Broken rotor bar fault in induction motors can be detected
by monitoring any abnormality of the motor current power
spectrurn amplitudes at several certain frequency components.
These frequency components are located around the main
frequency line and are determined according to the number
of poles and mechanical speed of the motor. However, there
are other effects that may obscure the detection of the
broken rotor bar fault or cause false alarms. For example,
these effects can be intrinsic manufacturing dissymmetry
[5], or load torque oscillation that can produce stator
currents with the frequency values the same as the
monitored frequencies. A broken rotor bar fault detection
scheme based on multiple frequency signatures thus should
be more reliable in overcoming or reducing the effect of
misinterpreted signatures, which are caused by the cffects
discussed formerly or some other unknown reasons. Multiple
Discriminant Analysis(MDA) and Artificial Neural Networks
(ANN) provide appropriate environments to develop such
fault detection schemes because of their multi-input
processing capabilities.

This paper presents two fault detection schemes for
broken rotor bar fault detection with multiple signature
processing and demonstrates that multiple signature processing
is more effective than single signature processing. The first



104  Monolith and Partition Schemes with LDA and Neural Networks as Detector Units for Induction Motor Broken Rotor Bar Fault Detection

E]

scheme will be named the “monolith scheme,” and it is
based on a single MDA or a single ANN unit representing
the complete motor operating load torque region. The
second scheme will be named the “partition scheme,” and it
consists of several small MDA or ANN units, each of which
representing a particular load torque operating region. The
two detection schemes have been investigated using
experimental data with MDA and ANN detection units,
respectively.

This paper is organized as follows: Section II discusses
the frequencies of interest to the broken rotor bar problem
and outlines the frequencies to be used in the MDA and
ANN units. Section III presents the experiment setup and
motor data specifications. Section IV outlines the fault
detection schemes together with experimental results and
analysis. Section V concludes the findings of this paper.

2. Motor Current Spectral Components for
Broken Rotor Bar

Kliman, Thomson, Filipetti, Elkasabgy [6-7] used motor
current signature analysis (MCSA) methods to detect
broken rotor bar faults by investigating the sideband
components around the supplied current fundamental
frequency (i.e. the line frequency), £, :

Jo=(1£25)f,, ey

where f, are the sideband frequencies associated with

the broken rotor bar, s is the per unit motor slip. The slip s is
defined as the relative mechanical speed of the motor, n,, ,

with respect to the motor synchronous speed, n_, as:

The motor synchronous speed, n,, is related to the line

frequency f, as:

1201
= 3
nS P ( )

where P is the number of poles of the motor and the
constant ‘120’ is used to express the motor synchronous
speed, n,, inrevolutions per minute (rpm) unit.

The broken bars also give rise to a sequence of other
sidebands given by [7]:

£, =(£2ks)f,, k=12,..k wheref, >0Vk, (4)

and is depicted conceptually in Fig. 1.
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Fig. 1 Sideband frequencies around the fundamental line

frequency.

Fig. 1 shows the frequency components specific to
broken rotor bar fault, which is given in equation (4) for
k=1 and 2. These frequencies are located around the
fundamental line frequency and are termed as lower
sideband and upper sideband components as indicated in Fig
1. There are other spectral components that can be observed
in the stator line current due to broken rotor bar fault [6]:

A z[(ﬁ}(l_s)is}fo, where k/p=1,3,5,..... (5)
p

The fault detection schemes investigated in this paper
depend on multiple signature processing. These signatures
correspond to the power spectrum amplitudes of the motor
current (phase-a) data at the selected frequencies. A detailed
explanation about the experiment setup and specifications
of the collected motor data will be given in Section III. We
use Welch’s periodogram method to compute the power
spectrum of phase-a motor current data. In Welch’s
periodogram method, we apply a Hanning window and 50%
overlapping percentage among the partitioned segments. It

_ has been noted that the use of a Hanning window and 50%

overlap leads to an efficient implementation of the FFT
algorithm [8]. In the fault detection schemes, we consider
four of the broken rotor bar fault specific frequency

components. Let F = { Y R S f2+} be the set of broken
rotor bar fault specific frequency components, and
P ={ P> Ppes Py p2+} be the set of Welch’s spectrum
amplitudes at these frequencies. The frequency components
insetFare: f- =(1-25)f5, fir =(1+25)fy, f,- =(1-45)f
and f,, =(1+4s)fy , where f; is the fundamental stator
current frequency and s is the slip. /. and f, are the first

lower and upper sidebands, while £ _ and /. are the

second lower and upper sidebands around f;,, which are

expressed mathematically in equation (4). The inputs for the
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MDA and ANN units in the monolith and partition schemes
thus consist of the signature set: { Pp-s Py Py p2+} .

The motivation in choosing the first and second lower and
upper sidebands around the fundamental supply frequency
is due to higher signal to noise ratio of these harmonics,
which contain more reliable and discriminative information
when compared to other harmonics. The higher frequency
harmonics are relatively low in spectrum amplitude; they
are thus more sensitive to noise. However, there is no
restriction in including other signatures or increasing the
number of signatures within the investigated detection schemes,
as far as the included signatures provide discriminative
information about the broken rotor bar fault.

The methodology, in the investigated fault detection
schemes, uses the Welch’s spectrum amplitudes of motor
current data at the broken rotor bar fault specific frequencies
as the discriminative signatures in the fault detection decision.
However, the locations of the monitored frequencies, f, ,

depend on the slip factor, s, which is a function of the motor
mechanical speed. When the no load case of motor is
considered, the slip factor value approaches to 0. This
results in the interference of the monitored frequencies with
the main supply frequency or its harmonics. The current
detection schemes will thus not be able to perform
efficiently for the no load condition of the motor. On the
other hand, signatures that are not dependent on the slip
factor, and that carry discriminative information, can be
included within the methodology in order to make the
detection schemes provide reliable fault decision in the no
load condition of the motor.

3. Experiment Setup and Motor Data Specifications

The characteristics of the 3-phase induction motor used in
our experiment are listed in Table 1. The motor was tested
with the healthy rotor and with the faulty rotor that had one
broken rotor bar. The broken rotor bar fault was induced by
filling one of the rotor bars full with anchoring cement
before the die-casting process. Anchoring cement is a high
strength, fast-setting gypsum cement with low conductivity.
The overall data collection scheme and the actual experiment
setup picture are depicted in Figures 2 and 3, respectively.

Table 1 Induction motor characteristics used in the

experiment.

Description Value
Power 0.75 kW (1Hp)
Input Voltage 380V
Full Load Current 22A
Supply Frequency 60 Hz
Number of Poles 4
Number of Rotor Slots 44

Number of Stator Slots 36
Full Load Torque 0.43 kg:m
Full Load Speed 1690 rpm

The induction motor was fed through a 3 phase ABB,
ACS 501 inverter. A Tektronix TM 5003 current amplifier
amplifies the induction motor stator currents before being
sent to the interfacing Pentium PC through the oscilloscope.
The needed load condition of the induction motor was
established by connecting the test motor to a DC Motor,
which is used as a generator and is capable of simulating any
desired load condition. The speed of the induction motor
was measured by a digital stroboscope.

Current
Amplifier =] Oscilloscope
5

+

Camputer

Digital
AC Stroboscope
Power
| v
@— Inverter & { lnﬂutt:tian Load @
- otor

Current
Fig. 2 Motor data collection scheme.

Probe

Fig. 3 Actual experiment setup to collect healthy and faulty
motor data.

The experiments involved collecting three phase stator
induction motor current and speed data for four different
load conditions of the motor both with one broken rotor bar
fault and without any fault. The load conditions of the motor
are 25%, 50%, 75% and full load respectively. These load
condition percentages are determined according to the
motor nameplate information given in Table 1. Thus, there
are a total of 8 different experiment cases. For each
individual case, 20 sets of motor current data were collected.
Each motor current data set contains 10,000 samples for a
duration of one second, which makes the sampling
frequency 10kHz. A sample phase-a motor current data
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waveform corresponding to healthy state of motor under full
load condition is demonstrated in Fig. 4.

4. Fault Detection Schemes and
Experimental Results

Let C denote the motor condition, which is comprised of
the two states of the motor: healthy condition, A/ , and faulty
condition with one broken rotor bar, F, Ce{H,F}. From

the motor current power spectrum analysis and broken rotor
bar specific frequency components knowledge, there exists
a mapping MM from (P,7,) to C as expressed in (6):

m:(P,7,)->C, (6)

where P:{pl,,pr,pz,,pr} is the set of Welch’s
periodogram power spectrum amplitudes at frequencies
Fz{ /RN S S f2+} and 7; is the motor load condition. In

our experiments, we have collected data at four different
load conditions of the motor as discussed in Section III,
where T, is either at full load, 75%, 50% or 25% load,

T; {sz% , T, Liso T Lo T, Lzs%} . In these experiments, motor
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Fig. 4 Healthy phase-a motor current data collected from
the experiment setup under full load condition of the
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speed variation in the collected motor speed data is less than
1.4% in all of the four investigated motor load conditions.
Fig. 5 demonstrates the PSD estimates at one of the broken
rotor bar fault specific frequencies, f. =(1-2s)f,, under

four different motor load conditions: 7 E{quow’TLw’

TLso% ’TLzs% e

In the monolith scheme, we use a single fault mapping
unit, M, which maps the signatures extracted throughout
the complete motor operating load condition, to the motor
condition. This scheme is depicted in Fig. 6. Inputs of the
fault mapping wunit consist of the signature set

{TL, P> Py s Py Py } , where 7; is the motor load condition.
py->pp are the first and p,, p,, are the second lower and
upper sidebands’ Welch’s periodogram power spectrum
amplitudes around the fundamental current frequency, f,,

respectively. The mapping for the monolith scheme is
depicted in (7):

M (P Py s Py s Py Tp) > {HF} 0

In the partition scheme, the single mapping unit 90t ,
which is used in the monolith scheme, is divided into
disjoint sub-mapping units 2,, where 91, corresponds to

a sub-mapping unit for a particular motor load condition and,

m m
QJI:Uim,- , ﬂﬁ]t,:@. In our case, m=4 . Thus, the
i=l i=1
sub-mapping units in the partition scheme consist of the
spectrum amplitude signatures only. A sub-mapping unit is
depicted in (8):

gj'zi :(pr '*pﬁ ’p2*3p2+) - {H’F} . (8)

P Single MDA (or ANN)
fault detection unit
for all motor load
conditions 7,(=1,7 m)

Motor condition
{Healthy or faulty
with one broken
rotor bar )

P+ — ]

Py ——»

Pyt —

Fig. 6 The monolith scheme.

The conceptual diagram of the partition scheme is
presented in Fig. 7. The mapping units in the partition
scheme provide partitioning of the complete motor
operating load region into subregions, each subregion
corresponding to a constant load condition. This procedure
thus transforms the nonlinear mapping problem into linear
mapping problems or mapping problems with a lower order
of nonlinearities. The partition scheme needs motor load
condition information as a prerequisite for the preparation of
the corresponding mapping units.
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In our case, we partition the motor’s load operating region

into four subregions, depicted as 7, =Ty Ty Ty Ty -

We then form MDA and ANN units for each particular load
subregion using the corresponding motor current signatures.
For analyses and performance comparisons of the fault
detection schemes, two different cases are considered in this
paper:
Case 1: Motor signature data set is treated as one whole
training data set, where DataSet D= {Training
Set} = {Test Set}.

Case 2: Motor signature data set is separated into two
sets: training and test, where DataSet D=
{Training Set} U {Test Set}and
Set} {Test Set} = .

Training process for the two cases consists of computing
the coefficients of the linear discriminant functions for the
MDA and the network weights for the ANN. Since we use
linear discriminant functions we will call LDA instead of
MDA in the remaining of this paper.

In the trials for finding proper ANN structures for both
monolith and partition schemes, it is observed that there is a
substantial range of ANN structures that can be selected
among, which provide efficient and satisfactory performance.
We have selected an ANN (5-10-1) structure for the
large-scale unit in the monolith scheme and an ANN (4-5-1)
structure to represent the small-scale units for each
particular load condition in the partition scheme. In
selection of these structures, we have taken into
consideration that we have a larger number of units in the
hidden layer than the input layer. The LM (Levenberg-
Marquardt) training algorithm is used in both schemes.

{Training

MDA fauit detection unit for

motor load condition (T]_l)

MDA fault detection unit for
P —» motor load condition (T,?) Motor Condition
Pt —» > (Healthy or faulty
Py — l — with one broken
Pyt ™ ' rotor bar)

MDA fault detection unit for
motor load condition (T}™)

Fig. 7 The partition scheme.

In Case 1, we have stopped training if the network
training etror reaches a pre-set value, which in our case is
le-5. In Case 2, we consider the same ANN structures but
apply a different training stop technique, known as cross
validation. Setting a fixed training error value to stop the
training process may cause overtraining. Cross validation is
a method to prevent overtraining. According to this technique,

data are divided into two disjoint sets: The first data set is
the training set, which is used for computing and updating
the neural network weights and biases and the second set is
used as the validation set [9].

We will also use the term test set as the validation set in
our analyses. The error on the validation set is checked
throughout the training process. It can be anticipated that the
error in the validation set decreases during the initial steps
of the training, just as the error in the training set. However,
when the network begins to overfit the data in the training
set, the error for the validation set begins to rise. When the
validation error increases for a specified number of steps,
the training is stopped to avoid overtraining, and the most
recent weights and the biases are used as the neural network
parameters [9]. Fig. 8 illustrates the principle of the cross
validation technique. In this figure, it can be seen that
training stops at the 12™ epoch, since the validation error
corresponding to the validation set or test data set does not
decrease, but slightly increases for some consecutive steps,
while training error continually decreases.

In analyzing fault detection performances, we use
statistical hypothesis testing, Type I error, , and Type 11
error, 3, which is expressed in Table 2. Our null hypothesis,
H,:

H,: Incoming motor signature test data correspond to

healthy state of the motor.

— - Test Data
—— Training Data

12¢ b

o
]
T
1

Perormance Error

04r

02

Epochs

Fig. 8 Training and validation error curves with cross
validation technique.

Type I error, a, will then correspond to the ratio of the
healthy motor data, which are classified as faulty, to the
total number of motor data. Likewise, Type Il error, £, will

correspond to the ratio of the faulty motor data, which are
classified as healthy, to the total number of motor data. We
will use the term ‘Correct Detection Rate’, CDR, in our
analyses, which is mathematically expressed in (9):

CDR =(1—-a - B). )
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Table 2 Typel and Type II Error Definition.

Decision Hy is true H is false
Reject H, Type I error Correct
Do not reject H, Correct Type 11 error

In order to compare the fault detection performances of
single signature and multiple signature processing, we have
applied LDA to each of the four signatures individualty for
both Case | and Case 2. Tables 3 and 4 depict the CDRs of
each single signature under Case 1 and Case 2 together with
Type I and Type II error measures. These tables indicate that
CDRs change significantly according to each individual
signature. Among these signatures, (1 —4s)f, has the
highest CDR, while the other three signatures have lower
CDRs. The seventh to ninth rows of Table 4 simply sums
CDRs and Type I-II errors of training and test data sets. We
have then considered four of the signatures together and
applied the monolith and partition schemes.

Table 3 CDRs of Single Frequency Components under Case 1.

Correct Detection Rate (CDR)
(1-25)f, | (+25)F, | (1-4s)f, | (1+4s)f,
CDR 132/160 | 150/160 152/160 117/160 .

=82.5% | =93.75% =95.0% | =73.12%
Type I Error 10/160 2/160 1/160 21/160

=6.25% | =1.25% =0.63% =13.13%
Type II Error 18/160 8/160 7/160 22/160

=11.25% | =5.00% =4.37% =13.75%

Table 5 depicts the CDR of LDA and ANN for the two
schemes under Case 1 together with Type I and Type II error
measures. LDA’s correct detection performance improves
with the partition scheme. It is also observed that CDRs in
both schemes are higher than any of the single signature’s
CDRs given in Tables 3 and 4.

The bar chart depicted in Fig. 9 presents the CDRs of both
single signature processing and multiple signature processing
for the two schemes under Case 1. This bar chart affirms that
multiple signature processing is more efficient in broken
rotor bar fault.

Table 6 depicts the CDRs and Type I-II errors of LDA

Table 4. CDRs of Single Frequency Components under Case 2.

and ANN under Case 2. In Case 2, since we have separated
the data into training and test sets, we have included the sum
of training and test data sets’ CDRs, in addition to each set’s
separate CDR. There is a considerable improvement examined
in the CDR with the partition scheme. In addition, these
CDRs are higher than any of the single signature’s CDRs
that are depicted in Tables 3 and 4 with the exception of one
equal case.

The partition scheme has provided an improved correct
detection performance both in LDA and ANN. However, a
significant performance increase is observed in LDA rather
than ANN. This is because ANN has already given
satisfactory response in the monolith scheme because of its
nonlinear mapping and universal approximation capability.
The partition scheme thus provides a way to cope with the
nonlinearities in the mapping process especially for LDA.
Partitioning the initial mapping space of the fault detection
problem with respect to one of its input variables into
smaller disjoint subregions and introducing sub-mapping
units, either ANN or LDA, for each of these small subregions
provide an increase in the correct detection performance.

Table 5 CDRs with Monolith and Partition Scheme under Case 1.
Correct Detection Rate (CDR)

Monolith Scheme

Partition Scheme

100.00%
95.00%

93.75%

90.00% 82.50%
85.00%
80.00%
75.00%

70.00%

95.00%

.y

<&
OAsH e DO dain s QF 7 &7
IS

95.63%

sl

& &

CDR (LDA) 153/160=95.63 % | 159/160=99.38 %

Type I Error (LDA) 1/160=0.63% 0/160=0.0%

Type Il Error (LDA) | 6/160=3.75% 1/160=0.63%

CDR (ANN) 160/160=100.0 % | 160/160=100.0 %

Type I Error (ANN) 0/160=0.0% 0/160=0.0%

Type 11 Error (ANN) 0/160=0.0% 0/160=0.0%
99.38% 100.00%

!

Fig. 9 CDRs with single signature processing and multiple
signature processing under Case 1.

Correct Detection Rate (CDR)

(1-2s) £,

(1+2s) £,

(1-4s) 1,

(1+4s) £,

CDR (Training)

72/80=90.00%

76/80=95.00%

75/80=93.75%

57/80=T71.25%

Type I Error (Training)

4/80=5.00%

1/80=1.25%

1/80=1.25%

10/80=12.5%

Type 11 Error (Training)

4/80=5.00%

3/80=3.75%

4/80=5.00%

13/80=16.25%

CDR (Test)

61/80=76.25%

75/80=93.75%

77/80=96.25%

61/80=76.25%

Type I Error (Test)

4/80=5.00%

0/80=0.0%

0/80=:0.0%

10/80=12.5%

Type II Error (Test)

15/80=18.75%

5/80=6.25%

3/80=3.75%

9/80=11.25%

CDR (Training+Test)

133/160=83.13%

151/160=94.38%

152/160=95.0%

118/160=73.75%

Type 1 Error (Training+Test)

8/160=5.00%

1/160=0.63%

1/160=0.63%

20/160=12.5%

Type II Error (Training+Test)

19/160=11.87%

8/160=5.00%

7/160=4.37%

22/160=13.75%
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Correct Detection Rate (CDR)

Monolith Scheme

Partition Scheme

CDR (LDA - Tr)

76/80=95.00 %

80/80=100.0 %

Type I (LDA-TY)

1/80=1.25%

0/80=0.0%

Type II (LDATT)

3/80=3.75%

0/80=0.0%

CDR (LDA - Test)

[76/80=95.00 %

78/80=97.50%

Type I (LDA —Test)

0/80=0.0%

1/80=1.25%

Type I (LDA - Test)

H/80=5.0%

1/80=1.25%

CDR (LDA - Total)

152/160=95.00%

158/160=98.75%

Type I (LDA - Total)

1/160=0.63%

1/160=0.63%

Type II (LDA - Total)

7/160=4.37%

1/160=0.63%

CDR( ANN, Tr) 80/80=100.00%  [80/80=100.0 %
Type I (ANN - Total)  [0/80=0.0% 0/80=0.0%
Type II (ANN - Total) [0/80=0.0% 0/80=0.0%
CDR (ANN, Test) 78/80=97.50% 80/80=100.0%
Type I (ANN - Test) [2/80=2.5% 0/80=0.0%
Type II (ANN - Test)  10/80=0.0% 0/80=0.0%

CDR (ANN Tr +Test) |158/160=98.75% |160/160=100.0%
Typel (ANN Tr + Test) [2/160=1.25% 0/160=0.0%
Typell (ANN Tr+Test) [0/160=0.0% 0/160=0.0%

5. Conclusion

Multiple signature processing for broken rotor bar fault
detection is considered to be more reliable than single
signature processing because of the possibility of the
obscuring effects that can overlap the significance of the one
and only inspected signature. LDA and ANN provide a
suitable environment to process multiple signatures for
broken rotor bar fault detection. In this paper, we have
demonstrated that multiple signature processing provides
better accuracy with respect to fault detection performance
when compared to single signature processing. In addition,
we have investigated two fault detection schemes for broken
rotor bar fault detection with multiple signature processing
feature: the monolith and the partition schemes. Experimental
results show that with the partition scheme, correct
detection performance improves. The partition scheme
reduces the dimension of the initial mapping space by
partitioning it into smaller disjoint subregions. This, at the
end, provides a better discrimination of broken rotor bar
fault from the healthy state of the motor.
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