• Title/Summary/Keyword: ANALYSIS OF KINEMATIC

Search Result 1,499, Processing Time 0.03 seconds

Analysis on Kinematic Characteristics for Spatial 3-DOF Parallel Mechanisms Employing Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 공간형 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Lee Seok Hee;Lee Jung Hun;Kim Whee Kuk;Yi Byung Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.118-127
    • /
    • 2005
  • A spatial 3 degrees-of-freedom mechanism employing Stewart Platform structure is proposed: the mechanism maintains the 3- RRPS structure of Stewart Platform but has an additional passive PRR serial sub-chain at the center area of the mechanism in order to constrain the output motion of the mechanism within the output motion space of the added PRR serial subchain. The forward and reverse position analyses of the mechanism are performed. Then the mechanism having both the forward and the reverse closed-form solutions is suggested and its closed form solutions are derived. It is confirmed, through the kinematic analysis of those two proposed mechanisms via kinematic isotropic index, that both the proposed mechanisms have fairly good kinematic characteristics compared to the existing spatial 3-DOF mechanisms in literature.

Analysis on Kinematic Characteristics for a Spherical 3-DOF Parallel Mechanism with Constrained Stewart Platform Structure (스튜워트 플랫폼 구조를 이용한 구형 3-자유도 병렬 메커니즘의 기구학 특성 분석)

  • 이석희;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.520-524
    • /
    • 2004
  • In this work, a novel spherical 3-dof parallel mechanism is proposed and analyzed. The mechanism consists of three RRPS serial subchains and an additional passive 3-dof type serial subchain. Three RRPS serial subchains alone may form a structure of 6-DOF Stewart Platform mechanism. However, in the proposed mechanism, an additional passive serial subchain acts as constraints to restrict the output motion of the mechanism within 3-DOF spherical space. The closed form solutions of position analysis of the proposed mechanism and its first-order kinematic model are derived. Then its workspace size and kinematic characteristics are examined via kinematic isotropic index.

  • PDF

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Numerical Kinematic Analysis of the Standard Macpherson Motor-Vehicle Suspension System

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1961-1968
    • /
    • 2003
  • In this paper, an efficient numerical algorithm for the kinematic analysis of the standard MacPherson suspension system is presented. The kinematic analysis of the suspension mechanism is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the kinematic joints. Geometric constraints that fix the distances between the points belonging to the same rigid link are introduced. The nonlinear constraint equations are solved by iterative numerical methods. The corresponding linear equations of the velocity and acceleration are solved to yield the velocities and accelerations of the unknown points. The velocities and accelerations of other points of interest as well as the angular velocity and acceleration of any link in the mechanism can be calculated.

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF

The Kinematic Analysis and Comparison of Foreign and Domestic 100m Elite Woman's Hurdling Techniques (국내외 우수 여자선수 100m 허들동작의 운동학적 비교 분석)

  • Ryu, Jae-Kyun;Yeo, Hong-Chul;Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.157-167
    • /
    • 2007
  • The purpose of this study was to analyze kinematic techniques in the woman's 100m hurdle. In order to find the kinematic parameters, a 3-D video system for kinematic analysis-kwon3d 3.1(Kwon3D Motion Analysis Program Version 3.1)-was used. Eight JVC video cameras(GR-HD1KR) were used to film the performance of Lee Yeon-Kyoung at a frame rate of 60fields/s. The kinematic characteristics from the first hurdle to last hurdle were analyzed at the clearing hurdle spots such as distance, velocities, heights and angles. The real-life three-dimensional coordinates of 20 body landmarks during each phases were collected using a Direct Linear Transformation procedure. After analyzing the kinematic variables in the 100m hurdle run, the following conclusion were obtained; Lee Yeon-Kyoung had to maintain constant stride lengths between hurdles and increase takeoff distance before clearance and shorter landing distance after clearance. She also had to hit the correct takeoff point in front of the hurdle and extend the lead leg at the moment of landing in order to minimize the loss of velocity. She had to sprint between hurdles as fast as possible over 8m/s and run powerful first stride and shortened third stride preparing for the following hurdle clearances.