• Title/Summary/Keyword: AMPK-${\alpha}2$

Search Result 69, Processing Time 0.026 seconds

Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats

  • Keapai, Waranya;Apichai, Sopida;Amornlerdpison, Doungporn;Lailerd, Narissara
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.581-593
    • /
    • 2016
  • The advantages of monounsaturated fatty acids (MUFAs) on insulin resistance and type 2 diabetes mellitus (T2DM) have been well established. However, the molecular mechanisms of the anti-diabetic action of MUFAs remain unclear. This study examined the anti-hyperglycemic effect and explored the molecular mechanisms involved in the actions of fish oil- rich in MUFAs that had been acquired from hybrid catfish (Pangasius larnaudii${\times}$Pangasianodon hypophthalmus) among experimental type 2 diabetic rats. Diabetic rats that were fed with fish oil (500 and 1,000 mg/kg BW) for 12 weeks significantly reduced the fasting plasma glucose levels without increasing the plasma insulin levels. The diminishing levels of plasma lipids and the muscle triglyceride accumulation as well as the plasma leptin levels were identified in T2DM rats, which had been administrated with fish oil. Notably, the plasma adiponectin levels increased among these rats. The fish oil supplementation also improved glucose tolerance, insulin sensitivity and pancreatic histological changes. Moreover, the supplementation of fish oil improved insulin signaling ($p-Akt^{Ser473}$ and p-PKC-${\zeta}/{\lambda}^{Thr410/403}$), $p-AMPK^{Thr172}$ and membrane GLUT4 protein expressions, whereas the protein expressions of pro-inflammatory cytokines (TNF-${\alpha}$ and nuclear NF-${\kappa}B$) as well as p-PKC-${\theta}^{Thr538}$ were down regulated in the skeletal muscle. These data indicate that the effects of fish oil-rich in MUFAs in these T2DM rats were partly due to the attenuation of insulin resistance and an improvement in the adipokine imbalance. The mechanisms of the anti-hyperglycemic effect are involved in the improvement of insulin signaling, AMPK activation, GLUT4 translocation and suppression of pro-inflammatory cytokine protein expressions.

Mountain-cultivated Ginseng Ripened into Persimmon Vinegar Ingestion on Fat Storage and Metabolic Protein Expression in Diet-controlled Rats (산양삼 혼입 숙성 감식초 섭취에 의한 식이 제한 흰쥐의 지방 저장 및 에너지 대사 단백질 발현)

  • Lee, In-Ho;Kim, Pan-Ki;Ryu, Sungpil
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • This research is to investigate the four years growth mountain-cultivated ginseng ripened twenty-two weeks into four years fermented persimmon vinegar (tentatively: Sansamcho) ingestion on obese-related factors during dietary control. The Sansamcho was ingested orally, two times a day, after every meal for six weeks to the male rats. Groups were divided into the control (CON), the restricted diet (RD), and the weight cycling (WC). And, each groups has its own sub-groups as the -control (-CON), 2.5 times diluted Sansamcho ingestion (-MPV2.5), and 5.0 times diluted Sansamcho ingestion (-MPV5.0) groups, respectively. The number of rat was consisted of seven in each group. After six weeks rearing periods was done, abdominal fats (retroperitoneal fat, mesentery fat, and epididymal fat) and energy metabolic-related protein (AMPK: AMP-activated protein kinase; PPAR-${\alpha}$: peroxisome proliferator-activated receptor-${\alpha}$; and CPT-1: carnitine palmitoyltransferase-1) were weighed and analyzed. Amount of stored fat was significantly or tended to decrease by Sansamcho ingestion. In addition, sum of fats increasing were suppressed by the material. On the contrary, energy metabolism-related protein expression was significantly increased or tended to increase by Sansamcho ingestion. This results suggested that increased energy metabolism using Sansamcho was restrained effectively visceral fat store by high-fat diet and/or dietary control. In other words, it has a good function to suppress weight cycling which is the most insoluble problem. Therefore, the fusion material, Sansamcho, may expect to utilize as the obese-suppression-food.

Effects of Geranium wilfordii Maxim. Ethanol Extract of on Adipogenesis and Lipogenesis (세잎쥐손이풀(Geranium wilfordii Maxim.) 에탄올 추출물이 지방생성 및 지방합성에 미치는 영향)

  • Tae Woo Kim;Kyoung Kon Kim;Jae Cheon Im;Hye Rim Lee;Jung Min Kim
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.307-313
    • /
    • 2024
  • In this study, the anti-obesity effect of Geranium wilfordii Maxim. extract was studied using 3T3-L1 cells. Geranium wilfordii Maxim. was extracted with water (NG-GT-T1L), 10% ethanol (NG-GT-T2L), 30% ethanol (NG-GT-T3L), 50% ethanol (NG-GT-T4L), 70% ethanol (NG-GT-T5L), and the effects on cell viability, lipid accumulation, triglyceride content, and protein expression in 3T3-L1 cells were confirmed. It was confirmed that NG-GT-T3L extract was superior to other extract conditions in reducing lipid accumulation and triglyceride content in the concentration range that did not show cytotoxicity. In addition, it was confirmed to suppress adipogenesis and lipogenesis by reducing the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) and CCAAT/enhancer binding protein-α(C/EBPα) proteins that regulate adipogenesis, decreasing the expression of fatty acid synthetase (FAS) and stearoyl CoA desaturase-1 (SCD-1) proteins that regulate lipogenesis, and increasing the expression of AMP-activated protein kinase (AMPK) protein. From these research results, Geranium wilfordii Maxim. NG-GT-T3L extract is believed to have anti-obesity reduction effects through suppressing lipid accumulation and triglyceride accumulation and regulating adipogenesis and lipogenesis-related proteins.

Artemisia capillaries Herbal Acupuncture Improves Metabolic Abnormalities in High Fat Diet-induced Obese ICR Mice (인진약침이 고지방식이유도 비만 ICR Mice에서 항비만 및 대사이상 개선에 미치는 영향)

  • Youh, Eun-Joo;Seo, Byung-Kwan;Huang, Bo;Kim, Jong-In;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • 목적 : 인진약침이 고지방식이로 유발된 비만 ICR mice에서 비만 및 동반 대사이상에 미치는 효과와 그 기전을 연구하고자 한다. 방법 : 인진약침의 비만 예방효과를 검증하기 위하여, 4주간 고지방식이를 급여하면서 150mg/kg 또는 300mg/kg의 인진약침을 양측 비수($BL_{20}$)에 교대로 매일 피하에 시술하였다. 또한 인진약침의 비만 치료효과를 검증하기 위하여, 4주간 고지방식이를 급여한 비만 ICR mice에 추가 4주간 고지방식이를 유지하면서 300 mg/kg 인진약침액과 vehicle control로써 등량의 distilled water를 양측 비수($BL_{20}$)에 교대로 매일 피하에 약침시술하였다. 인진약침의 항비만효과와 기전을 알아보기 위해, 체중, blood glucose, insulin, total cholesterol, triglyceride, non-esterified fatty acid (NEFA), AST, ALT levels 등 대사지표를 측정하고 부고환조직의 조직학적 관찰을 시행하였으며, AMPK activation과 adipocyte differentiation, fatty acid ${\beta}$-oxidation 및 thermogenesis와 관련된 gene expressions을 평가하였다. 결과 : 인진약침의 치료를 통하여 고지방식이 급여로 인한 체중의 증가가 억제되었을 뿐만 아니라, 비만 ICR mice의 체중을 감소시켰으며, glucose 및 lipid homeostasis를 개선시켰으며 지방조직의 증식을 억제하였다. AMPK의 phosphorylation과 CPT-1 및 UCP2의 발현을 증가시켰으며, PPAR-${\gamma}$, C/EBP${\alpha}$, aP2, LPL,FAS, SCD-1의 발현을 억제하였다. 결론 : 인진약침은 고지방식이 유도 동물모델에서 비만 및 동반 대사이상을 개선시키는 효과가 있으며, 이는 식이억제에 의한 2차적 효과라기 보다는 energy expenditure를 증가시키고, pre-adipocyte differentiation 및 proliferation을 억제하며, lipogenesis를 억제하고 lipolysis를 증가시키는 효과에 의한 것으로 사료된다.

Water Extract of Fermented New Korean Medicinal Mixture (F-MAPC) Controls Intracellula Adipogenesis and Glut-4 dependent Glucose Uptake in 3T3-L1 Adipocytes and L6 Myoblasts (세포 내 지방생성과 Glut-4 의존성 포도당 운반에 미치는 발효복합한약 물추출물(F-MAPC)의 영향)

  • Jeon, Seo Young;Park, Ji Young;Kim, Sung Ok;Lee, Eun Sil;Koo, Jin Suk;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the effects water extract of fermented new korean medicinal mixture, combinations of Mori Folium, Adenophorae Radix, Phllostachyos Folium and Citri Pericarpium (F-MAPC), on adipocyte differentiation, adipogenesis and glucose uptake using undiffernentiated 3T3-L1 adipocytes and L6 myoblasts. Methods : Each herb and those mixture were respectively fermented and then extracted with water. We carried on MTT assay for check-up on cell toxicity, Oil Red O staining for determination of cell differentiation and intracelluar adipogenesis. Western blot analysis for measurement of pAMPK and pACC, $C/EBP{\alpha}$, $PPAR{\gamma}$ and Glut-4 protein expressions were performed. Results : F-MAPC showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 preadipocytes without affecting cell toxicity as assessed by measuring fat accumulation, and this effect was 2 fold higher in 0.2 mg/ml F-MAPC than that of the same dose of each fermented herbal extract alone. In addition, these effects were associated with modulation of adipogenic transcription factors, such as $C/EBP{\alpha}$, $PPAR{\gamma}$, as well as stimulated phosphorylations of AMPK and ACC. Translocation of Glut-4 was significantly increased by 10.2% in L6 cells treated with 0.2 mg/ml F-MAPC compared with that of control. Conclusions : These results demonstrate that F-MAPC may be an ideal candidate for therapy of obesity and diabetes by disturbing the differentiation into adipocytes, as well as the inducement of intramuscular glucose uptake from blood.

Anti-obesity Effects of Water and Ethanol Extracts of Black Ginseng (흑삼의 열수 및 에탄올 추출물의 항비만 효과)

  • Park, Hye-Jin;Kim, Ae-Jung;Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.314-323
    • /
    • 2015
  • Black ginseng was made by steaming raw white ginseng nine times at $100^{\circ}C$ for 2 h and drying. We then performed pilot experiments using the nine black ginseng extracts for different steaming and drying times to determine their anti-obesity effects. Two ginseng extracts, steaming and drying five times (FSFD) and steaming and drying nine times (NSND), prepared in water or ethanol solution decreased lipid accumulation of 3T3-L1 cells. FSFD in water and ethanol extracts showed higher levels of ginsenosides, in particular, Rh1, Rg2, and Rb1 than NSND, and levels of the three ginsenosides were higher in ethanol extracts than in water extracts. Treatment with FSFD and/or NSND in ethanol extracts significantly regulated $PPAR{\gamma}$, C/$EBP{\alpha}$ and AMPK phosphorylation in 3T3-L1 cells. We verified doubling time of stem cells from both abdominal fat and subcutaneous fat after FSFD and NSND in ethanol and water extracts were added. Although addition of FSFD and NSFD in water extracts had no effects on proliferation, ethanol extracts with FSFD and NSND increased doubling time of stem cells in subcutaneous fat. FSFD and NSND in ethanol extracts more effectively reduced adipogenesis compared to those in water extracts. FSFD in ethanol extracts promoted secretion of anti-inflammatory cytokine such as IL-10 and depressed MCP-1 infiltration in 3T3-L1 preadipocytes co-cultured with RAW264.7 cells. We concluded that FSFD and NSND ethanol extracts may be developed as a functional food for its anti-obesity effect, but anti-inflammatory effect was shown in ethanol extracted FSFD rather than in NSND.

Change of Ripened Persimmon Vinegar with Mountain Ginseng Ingestion on Energy Metabolism in Rats (산양삼 혼입 숙성 감식초 섭취에 의한 흰쥐의 에너지 대사 변화 연구)

  • Jeon, Byung-Duk;Kim, Pan-Gi;Ryu, Sungpil
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.517-525
    • /
    • 2012
  • In this study, a 4-year-old mountain ginseng was mixed and ripened with 4-year-matured persimmon vinegar, and then it was diluted 5 times and orally administerd to rats. Afterwards, by analyzing the protein expression rate which affects both the carbohydrate metabolism and the lipid metabolism, this study examined the anti-obesity effect of the fusion material. The rats were divided into a control group (CON), a persimmon vinegar group (PV) and a mountain ginseng+persimmon vinegar fusion material group (MPV). The weight gain rate was found to be low in PV and MPV, and the concentration of glucose was also low in PV and MPV. However, GLUT-2 was found to be significantly high in these two groups on the contrary. Both the concentration of free fatty acid and CPT-1 protein expression rate were high in PV and MVP, but MVP was higher than PV. Cytochrome C oxidase was found to be higher in MPV than in CON. AMPK, $PPAR-{\gamma}$ and $PGC1-{\alpha}$ were all high in PV and MPV, but MPV was higher than PV. All the results above verified the thermogenesis effect of the fusion material, leading to an increase of energy metabolism, and it was thought that the fusion material could be effectively used for anti-obesity. However, it seems necessary to verify the anti-obesity effect through various further studies.

Anti-obesity Effect of Rhizoma Atractylodis Herbal Acupuncture in High Fat Diet-induced Obese ICR Mouse (고지방 식이로 유도된 비만 생쥐에서 창출약침의 항비만 효과)

  • Youh, Eun-Joo;Seo, Byung-Kwan;Nam, Sang-Soo;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.27 no.6
    • /
    • pp.31-42
    • /
    • 2010
  • Objectives : The aim of this study was to investigate the anti-obesity potential and mechanisms of action of Rhizoma Atractylodis(RA) herbal acupuncture in high fat diet- induced obese ICR mice. Methods : Sample solutions for herbal acupuncture were prepared from the Rhizoma Atractylodis water extract powder at concentration of 150mg/kg and 300mg/kg with distilled water. Five week-old ICR mice acclimatized to the laboratory environment for 1 week were allocated into four groups: regular diet group (RD), high fat diet group(HFD), groups fed HFD with 150mg/kg RA herbal acupuncture treatment (RAE 150) and with 300mg/kg RA herbal acupuncture treatment(RAE 300). Herbal acupuncture groups were injected with either 150mg/kg or 300mg/kg of Rhizoma Atractylodis(RA) subcutaneously onto both Sinsu($BL_{23}$) alternately on the same time everyday for 30days. Body weight, gross appearance of epididymal fat area, blood glucose, insulin, insulin resistance(HOMA-IR), non-esterified fatty acid, cholesterol, triglyceride, AST, ALT, histological analysis of white adipose tissue, gene expression responsible for adipocyte differentiation and AMPK activation were analyzed. Results : RA herbal acupuncture inhibited the development of weight gain, hyperglycemia, hyperinsulinemia, hyperlipidemia, increases of AST and ALT, and the enlargement of fat cell size induced by HFD. Also, RA herbal acupuncture inhibited the expression of PPAR-${\gamma}$, C/$EBP{\alpha}$, aP2, LPL, FAS, SCD-1 and enhanced the activation of AMP-activated protein kinase. Conclusions : The results of this study demonstrate that RA herbal acupuncture can exert the anti-obesity effect and it is partially mediated by activation of AMPK and inhibition of the gene expressions responsible for adipocyte differentiation. Further studies will be required to ascertain the nti-obesity effect and mechanisms of action of RA herbal acupuncture in animal models and human for aclinical application.

Adenine attenuates lipopolysaccharide-induced inflammatory reactions

  • Silwal, Prashanta;Lim, Kyu;Heo, Jun-Young;Park, Jong IL;Namgung, Uk;Park, Seung-Kiel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.379-389
    • /
    • 2018
  • A nucleobase adenine is a fundamental component of nucleic acids and adenine nucleotides. Various biological roles of adenine have been discovered. It is not produced from degradation of adenine nucleotides in mammals but produced mainly during polyamine synthesis by dividing cells. Anti-inflammatory roles of adenine have been supported in IgE-mediated allergic reactions, immunological functions of lymphocytes and dextran sodium sulfate-induced colitis. However adenine effects on Toll-like receptor 4 (TLR4)-mediated inflammation by lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria, is not examined. Here we investigated anti-inflammatory roles of adenine in LPS-stimulated immune cells, including a macrophage cell line RAW264.7 and bone marrow derived mast cells (BMMCs) and peritoneal cells in mice. In RAW264.7 cells stimulated with LPS, adenine inhibited production of pro-inflammatory cytokines $TNF-{\alpha}$ and IL-6 and inflammatory lipid mediators, prostaglandin $E_2$ and leukotriene $B_4$. Adenine impeded signaling pathways eliciting production of these inflammatory mediators. It suppressed $I{\kappa}B$ phosphorylation, nuclear translocation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), phosphorylation of Akt and mitogen activated protein kinases (MAPKs) JNK and ERK. Although adenine raised cellular AMP which could activate AMP-dependent protein kinase (AMPK), the enzyme activity was not enhanced. In BMMCs, adenine inhibited the LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-13 and also hindered phosphorylation of $NF-{\kappa}B$ and Akt. In peritoneal cavity, adenine suppressed the LPS-induced production of $TNF-{\alpha}$ and IL-6 by peritoneal cells in mice. These results show that adenine attenuates the LPS-induced inflammatory reactions.

Effects of Vitexin from Mung Bean on 3T3-L1 Adipocyte Differentiation and Regulation According to Adipocytokine Secretion (녹두의 Vitexin이 비만전구세포에서 세포분화 및 아디포사이토카인 분비능에 미치는 영향)

  • Wi, Hae-Ri;Choi, Mun-Ji;Choi, Se-Lim;Kim, Ae-Jung;Lee, Myoung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1079-1085
    • /
    • 2012
  • Obesity is an important issue worldwide as it may associated with increased prevalence of metabolic diseases. Mung bean is known as a functional food for decreasing the glycemic index and lipid profile of plasma. The purpose of this study was to investigate the anti-obesity effects of vitexin from mung bean on the regulation of adipocyte differentiation and adipocytokine secretion. When 3T3-L1 adipocytes were treated with vitexin from days 0 to 14 at various levels of 25, 50, 100, and $200{\mu}M$, there was no change in cell viability. Vitexin treatment at 50, 100, and $200{\mu}M$ decreased triacylglycerol levels in cells, but only $100{\mu}M$ vitexin induced lipolysis. At $200{\mu}M$ of vitexin, phosphorylation of p38 and ERK, which causes secretion of inflammatory adipocytokines, was depressed, whereas there was an increase in expression of $PPAR{\gamma}$, the key regulator of adipocyte differentiation. Phosphorylation of AMPK increased at $100{\mu}M$ vitexin. TNF-${\alpha}$ and aP2 mRNA expression increased at $25{\mu}M$ vitexin, whereas only TNF-${\alpha}$ mRNA expression increased at $200{\mu}M$ vitexin. Further, the mRNA levels of TNF-${\alpha}$ and aP2 decreased at other concentrations in a dose-dependent manner. Since we observed that mRNA expression of C/EBP, SREBP1, and $PPAR{\gamma}$ did not change upon vitexin treatment, our future studies will investigate other genes such as mTOR, which is related with apoptosis signaling, or SIRT1, which is associated with inhibition of adipogenesis. Our results indicate that vitexin at concentrations between 100 and $200{\mu}M$ is suitable in vivo for the development of mung bean as an anti-obesity therapy or functional food.