• Title/Summary/Keyword: AMPK phosphorylation

Search Result 141, Processing Time 0.027 seconds

Effect of Bisphenol A on Insulin-Mediated Glucose Metabolism In Vivo and In Vitro

  • Ko, Jeong-Hyeon;Kang, Ju-Hee;Park, Chang-Shin;Shin, Dong-Wun;Kim, Ji-Hye;Kim, Hoon;Han, Seung-Baik
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.348-354
    • /
    • 2008
  • Bisphenol A (BPA), an environmental endocrine disrupter, enters the human body continuously in food and drink. Young children are likely to be more vulnerable than adults to chemical exposure due to the immaturities of their organ systems, rapid physical development, and higher ventilation, metabolic rates, and activity levels. The direct effect of BPA on peripheral tissue might also be of importance to the development of insulin resistance. However, the influence that BPA has on insulin signaling molecules in skeletal muscle has not been previously investigated. In this study, we examined the effect of BPA on fasting blood glucose (FBG) in post-weaned Wistar rats and on insulin signaling proteins in C2C12 skeletal muscle cells. Subsequently, we investigated the effects of BPA on insulin-mediated Akt phosphorylation in C2C12 myotubes. In rats, BPA treatment (0.1-1,000 ng/mL for 24 hours) resulted in the increase of FBG and plasma insulin levels, and reduced insulin-mediated Akt phosphorylation. Furthermore, the mRNA expression of insulin receptor (IR) was decreased after 24 hours of BPA treatment in C2C12 cells in a dose-dependent manner, whereas the mRNA levels of other insulin signaling proteins, including insulin receptor substrate-1 (IRS-1) and 5'-AMP-dependent protein kinase (AMPK), were unaffected. Treatment with BPA increased GLUT4 expression and protein tyrosine phosphatase 1B (PTP1B) activity in C2C12 myotubes, but not in protein levels. We conclude that exposure to BPA can induce insulin resistance by decreasing IR gene expression, which is followed by a decrease in insulin- mediated Akt activation and increased PTP1B activity.

Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation

  • Han, Jae Yun;Lee, Sangkyu;Yang, Ji Hye;Kim, Sunju;Sim, Juhee;Kim, Mi Gwang;Jeong, Tae Cheon;Ku, Sae Kwang;Cho, Il Je;Ki, Sung Hwan
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.105-115
    • /
    • 2015
  • Background: Alcoholic steatosis is the earliest and most common liver disease, and may precede the onset of more severe forms of liver injury. Methods: The effect of Korean Red Ginseng extract (RGE) was tested in two murine models of ethanol (EtOH)-feeding and EtOH-treated hepatocytes. Results: Blood biochemistry analysis demonstrated that RGE treatment improved liver function. Histopathology and measurement of hepatic triglyceride content verified the ability of RGE to inhibit fat accumulation. Consistent with this, RGE administration downregulated hepatic lipogenic gene induction and restored hepatic lipolytic gene repression by EtOH. The role of oxidative stress in the pathogenesis of alcoholic liver diseases is well established. Treatment with RGE attenuated EtOH-induced cytochrome P450 2E1, 4-hydroxynonenal, and nitrotyrosine levels. Alcohol consumption also decreased phosphorylation of adenosine monophosphate-activated protein kinase, which was restored by RGE. Moreover, RGE markedly inhibited fat accumulation in EtOH-treated hepatocytes, which correlated with a decrease in sterol regulatory element-binding protein-1 and a commensurate increase in sirtuin 1 and peroxisome proliferator-activated receptor-a expression. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly inhibited fat accumulation in hepatocytes. Conclusion: These results demonstrate that RGE and its ginsenoside components inhibit alcoholic steatosis and liver injury by adenosine monophosphate-activated protein kinase/sirtuin 1 activation both in vivo and in vitro, suggesting that RGE may have a potential to treat alcoholic liver disease.

Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes (레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과)

  • Jo, Yong Seok;Ju, Sung Min;Hwang, Keum Hee;Kim, Min Sook;Kim, Kwang Sang;Jeon, Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.

Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes (모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구)

  • Kang, Seok Yong;Hyun, Sun Young;Kwon, Yedam;Park, Yong-Ki;Jung, Hyo Won
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

Effects of Vitexin from Mung Bean on 3T3-L1 Adipocyte Differentiation and Regulation According to Adipocytokine Secretion (녹두의 Vitexin이 비만전구세포에서 세포분화 및 아디포사이토카인 분비능에 미치는 영향)

  • Wi, Hae-Ri;Choi, Mun-Ji;Choi, Se-Lim;Kim, Ae-Jung;Lee, Myoung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1079-1085
    • /
    • 2012
  • Obesity is an important issue worldwide as it may associated with increased prevalence of metabolic diseases. Mung bean is known as a functional food for decreasing the glycemic index and lipid profile of plasma. The purpose of this study was to investigate the anti-obesity effects of vitexin from mung bean on the regulation of adipocyte differentiation and adipocytokine secretion. When 3T3-L1 adipocytes were treated with vitexin from days 0 to 14 at various levels of 25, 50, 100, and $200{\mu}M$, there was no change in cell viability. Vitexin treatment at 50, 100, and $200{\mu}M$ decreased triacylglycerol levels in cells, but only $100{\mu}M$ vitexin induced lipolysis. At $200{\mu}M$ of vitexin, phosphorylation of p38 and ERK, which causes secretion of inflammatory adipocytokines, was depressed, whereas there was an increase in expression of $PPAR{\gamma}$, the key regulator of adipocyte differentiation. Phosphorylation of AMPK increased at $100{\mu}M$ vitexin. TNF-${\alpha}$ and aP2 mRNA expression increased at $25{\mu}M$ vitexin, whereas only TNF-${\alpha}$ mRNA expression increased at $200{\mu}M$ vitexin. Further, the mRNA levels of TNF-${\alpha}$ and aP2 decreased at other concentrations in a dose-dependent manner. Since we observed that mRNA expression of C/EBP, SREBP1, and $PPAR{\gamma}$ did not change upon vitexin treatment, our future studies will investigate other genes such as mTOR, which is related with apoptosis signaling, or SIRT1, which is associated with inhibition of adipogenesis. Our results indicate that vitexin at concentrations between 100 and $200{\mu}M$ is suitable in vivo for the development of mung bean as an anti-obesity therapy or functional food.

Immunostimulatory and Anti-Obesity Activity of Lonicera insularis Nakai Extracts in Mouse Macrophages RAW264.7 Cells and Mouse Adipocytes 3T3-L1 Cells (섬괴불나무(Lonicera insularis Nakai) 추출물의 면역자극 및 항비만 활성)

  • Yu, Ju Hyeong;Yeo, Joo Ho;Choi, Min Yeong;Lee, Jae Won;Geum, Na Gyeong;An, Mi-Yun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.417-427
    • /
    • 2022
  • In this study, we investigated in vitro immuno-stimulatory and anti-obesity activity of fruit (LIF), leaves (LIL) and stems (LIS) from Lonicera insularis Nakai in mouse macrophages RAW264.7 cells and mouse pre-adipocytes 3T3-L1 cells. LIF, LIL and LIS increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and activated phagocytosis in RAW264.7 cells. Inhibition of toll-like receptor 2/4 (TLR2/4) partly blocked LIF, LIL and LIS mediated production of immunostimulatory factors. In addition, inhibition of mitogen-activated protein kinases (MAPK) signaling attenuated the production of immunostimulatory factors induced by LIF, LIL and LIS. Based on these results of this study, LIF, LIL and LIS is thought to activate macrophages the production of immunostimulatory factors and phagocytosis through toll-like receptor 2/4 (TLR2/4) and MAPKs signaling pathway. In anti-obesity study, LIF reduced the lipid accumulation in 3T3-L1 cells. LIF increased the protein phosphorylation expressions such as AMP-activated protein kinase (AMPK), hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL) related to the lipolysis of the adipocytes. In addition, LIF increased the expression of proteins involved in energy metabolism and brown adipose tissues differentiation such as peroxisome proliferator-activated receptor gamma coativator 1α (PGC-1α) and PR domain-containing16 (PRDM16). These results suggest that LIF is involved in lipid accumulation inhibition through expressing the proteins such as lipolysis and differentiation of white adipocytes to brown adipocytes.

Inhibition of Differentiation and Anti-Adipogenetic Effect of the Salvia plebeia R. Br. Ethanol Extract in Murine Adipocytes, 3T3-L1 Cells (배암차즈기 에탄올 추출물의 3T3-L1 지방전구세포 분화 억제 및 지방 축적 저해 효과)

  • Kim, Sung-Ok;Kim, Mi-Ryeo;Hwang, Kyung-A;Park, No-Jin;Jeong, Ji-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.401-408
    • /
    • 2017
  • Salvia plebeia R. Br. (Lamiaceae) has been used in folk medicines in Asian countries, including Korea and China, to treat inflammatory diseases. The focus of our research was on the anti-adipogenic activity of ethanol extract from Salvia plebeia R. Br. (SPE) in 3T3-L1 adipocytes. This study investigated inhibition of differentiation and lipogenesis upon SPE treatment in 3T3-L1 cells. The results reveal that SPE at non-cytotoxic concentration significantly suppressed triglyceride accumulation and reduced expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein-alpha, and sterol regulatory element-binding protein as adipogenic transcription factors in 3T3-L1 adipocytes compared to non-treated control cells. Inducible phosphorylation of AMP-activated protein kinase, acetyl CoA carboxylase, and hormone-sensitive lipase as well as carnitine palmitoyltransferase-1 mRNA expression increased upon SPE treatment, which suppressed expression of fatty acid synthase. In conclusion, these results demonstrate that SPE can inhibit expression of adipogenic genes in 3T3-L1 adipocytes. Our study suggests that SPE has potential anti-obesity effects and is a novel therapeutic functional agent with anti-adipogenic activity via reduction of lipogenesis.

Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract (강황 추출물의 비알코올성 지방간 질환 개선 효과)

  • Lee, Young Seob;Lee, Dae Young;Kwon, Dong Yeul;Kang, Ok Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

Effect of hemp seed oil on lipid metabolism in rats fed a high-cholesterol diet (햄프씨드 오일이 고콜레스테롤식이를 급여한 흰쥐의 지질대사에 미치는 영향)

  • Jin A Lee ;Seong-Soo Roh ;Woo Rak Lee;Mi-Rae Shin
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.361-376
    • /
    • 2023
  • Purpose: This study evaluates the potential protective effects of hemp (Cannabis sativa L.) seed oil supplementation in rats fed a high-cholesterol diet. Methods: Rats were fed a 1.25% cholesterol diet for 8 weeks, followed by oral administration of either of the two doses of hemp seed oil (HO) (0.5 mL/kg (HOL group) or 1 mL/kg (HOH group) body weight/day) or simvastatin at 10 mg/kg body weight/day. Oxidative stress, lipids, liver enzymes, and renal markers were measured in the serum. Western blot analysis was applied for evaluating the expressions of inflammatory makers. Results: Except for HDL-cholesterol, the altered levels of lipoproteins, aminotransferases, urea, and creatine kinases in hypercholesterolemic rats were significantly corrected by HO administration. Especially, compared to the HOH group, HOL treatment further reduced AST, ALT, creatinine, TC, and LDL-cholesterol levels. Moreover, both the atherogenic index and cardiac risk factor (CRF) in the HOL group were more restrained compared to the HOH group. Increased levels of p-AMPK coincided with the inhibition of SREBP-2 activation which subsequently suppressed the expression of HMGCR. Nuclear factor (NF)-κB activation coincided with the PI3K/Akt pathway activation and the increased phosphorylation of p38; these levels were significantly suppressed by HO treatment. In addition, HO treatment markedly reversed the changes in chemokines such as ICAM-1, VCAM-1, and MCP-1. Histological alterations induced by cholesterol overload in cardiac and hepatic tissues were ameliorated by HO supplementation. Conclusion: Taken together, our results indicate a low concentration of HO demonstrates improved dysfunctions caused by a high-cholesterol diet via inhibition of the PI3K/Akt/NF-κB signaling pathway.

Anti-diabetic effect and mechanism of Korean red ginseng extract in C57BL/KsJ db/db mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Proceedings of the Ginseng society Conference
    • /
    • 2007.12a
    • /
    • pp.57-58
    • /
    • 2007
  • Purpose: Ginseng is a well-known medical plant used in traditional Oriental medicine. Korean red ginseng (KRG) has been known to have potent biological activities such as radical scavenging, vasodilating, anti-tumor and anti-diabetic activities. However, the mechanism of the beneficial effects of KRG on diabetes is yet to be elucidated. The present study was designed to investigate the anti-diabetic effect and mechanism of KRG extract in C57BL/KsJ db/db mice. Methods: The db/db mice were randomly divided into six groups: diabetic control group (DC), red ginseng extract low dose group (RGL, 100 mg/kg), red ginseng extract high dose group (RGH, 200 mg/kg), metformin group (MET, 300 mg/kg), glipizide group (GPZ, 15 mg/kg) and pioglitazone group (PIO, 30 mg/kg), and treated with drugs once per day for 10 weeks. During the experiment, body weight and blood glucose levels were measured once every week. At the end of treatment, we measured Hemoglobin A1c (HbA1c), blood glucose, insulin, triglyceride (TG), adiponectin, leptin, non-esterified fatty acid (NEFA). Morphological analyses of liver, pancreas and white adipose tissue were done by histological observation through hematoxylin-eosin staining. Pancreatic islet insulin and glucagon levels were detected by double-immunofluorescence staining. To elucidate an action of mechanism of KRG, DNA microarray analyses were performed, and western blot and RT-PCR were conducted for validation. Results: Compared to the DC group mice, body weight gain of PIO treated group mice showed 15.2% increase, but the other group mice did not showed significant differences. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in RGL, 18.3% in RGH, 67.7% in MET, 52.3% in GPZ, 56.9% in PIO-treated group. With decreased plasma glucose levels, the insulin resistance index of the RGL-treated group was reduced by 27.7% compared to the DC group. Insulin resistance values for positive drugs were all markedly decreased by 80.8%, 41.1% and 68.9%, compared to that of DC group. HbA1c levels in RGL, RGH, MET, GPZ and PIO-treated groups were also decreased by 11.0%, 6.4%, 18.9%, 16.1% and 27.9% compared to that of DC group, and these figure revealed a similar trend shown in plasma glucose levels. Plasma TG and NEFA levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the RGL-treated group compared to those in DC group. Histological analysis of the liver of mice treated with KRG revealed a significantly decreased number of lipid droplets compared to the DC group. The control mice exhibited definitive loss and degeneration of islet, whereas mice treated with KRG preserved islet architecture. Compared to the DC group mice, KRG resulted in significant reduction of adipocytes. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin production, but decreased glucagon production. KRG treatment resulted in stimulation of AMP-activated protein kinase (AMPK) phosphorylation in the db/db mice liver. To elucidate mechanism of action of KRG extract, microarray analysis was conducted in the liver tissue of mice treated with KRG extract, and results suggest that red ginseng affects on hepatic expression of genes responsible for glycolysis, gluconeogenesis and fatty acid oxidation. In summary, multiple administration of KRG showed the hypoglycemic activity and improved glucose tolerance. In addition, KRG increased glucose utilization and improved insulin sensitivity through inhibition of lipogenesis and activation of fatty acid $\beta$-oxidation in the liver tissue. In view of our present data, we may suggest that KRG could provide a solid basis for the development of new anti-diabetic drug.

  • PDF