• Title/Summary/Keyword: AMP kinase

Search Result 426, Processing Time 0.04 seconds

Protein Kinase Modulates the $GABA_c$ Currents in Cone-horizontal Cell Axon-terminals Isolated from Catfish Retina

  • Paik, Sun-Sook;Lee, Sung-Jong;Jung, Chang-Sub;Bai, Sun-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.54-54
    • /
    • 1999
  • Protein kinase modulation of gamma-aminobutyric acid C (GABA$_{c}$) currents in freshly dissociated catfish retinal cone-horizontal cell axon-terminals was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA were monitored in intracellular application of adenosin 3',5'-cycle monophophate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, and their inhibitors or inactive analogues.(omitted)d)

  • PDF

cAMP/PKA Agonist Restores the Fasting-Induced Down-Regulation of nNOS Expression in the Paraventricular Nucleus

  • Yoo, Sang-Bae;Lee, Seoul;Lee, Joo-Young;Kim, Bom-Taeck;Lee, Jong-Ho;Jahng, Jeong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.333-337
    • /
    • 2012
  • Gene expression of neuronal nitric oxide synthase (nNOS) changes in the hypothalamic paraventricular nucleus (PVN) depending on feeding conditions, which is decreased during food deprivation and restored by refeeding, and phosphorylated cAMP response element binding protein (pCREB) was suggested to play a role in its regulation. This study was conducted to examine if the fasting-induced down-regulation of the PVN-nNOS expression is restored by activation of cAMP-dependent protein kinase A (cAMP/PKA) pathway. Freely moving rats received intracerebroventricular (icv) injection of cAMP/PKA activator Sp-cAMP (40 nmol) or vehicle (sterilized saline) following 48 h of food deprivation. One hour after drug injections, rats were transcardially perfused with 4% paraformaldehyde, and the PVN tissues were processed for nNOS or pCREB immunohistochemistry. Sp-cAMP significantly increased not only nNOS but also pCREB immunoreactivities in the PVN of food deprived rats. Fastinginduced down-regulation of the PVN-nNOS was restored by 1 h after the icv Sp-cAMP. Results suggest that cAMP/PKA pathway may mediate the regulation of the PVN-nNOS expression depending on different feeding conditions.

Molecular Characterization of a Protein Kinase Gene in Chiness Cabbage(Brassica campestrics subsp. napus var. pekinensis)

  • Jeong, Sang-Ho;Ahn, Ji-Hoon;Lee, June-Seung;Lee, Jong-Seob
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 1997
  • Random sequencing of expressed sequence tags in roots of Chinese cabbage led to isolation of a partial cDNA clone, BR77, which encoded a putative protein kinase. Using the BR77 cDNA as a probe, we isolated a full-length cDNA encoding the Brassica campestris protein kinase 1 (Bcpk1). The Bcpt1 cDNA contained one open reading frame encoding a polypeptide of 439 amino acids. The putative polypeptide consisted of a short N-terminal region and a protein kinase catalytic domain. The catalytic domain of Bcpkl showed a high homology to cAMP- and calcium- phospholipid-dependent subfamilies of serine/threonine protein kineses. Eleven major catalytic domains in protein kineses were well conserved in Bcpk1. However, Bcpk1 contained a unique nonhomologous intervening sequence between subdomains VII and VIII, which was not found in protein kineses of animals and lower eukaryotes. Genomic DNA gel blot analysis showed that Bcpt1 genes might be present as three copies in the Chinese cabbage genome. These imply that Bcpk1 belongs to a plant-specific serine/threonine protein kinase subfamily.

  • PDF

Phosphoryl Transferring Activity was Revealed from $F_1-ATPase$ of Escherichia coli by $^{31}P$ NMR Investigation

  • Sohn, Joon-Hyung;NamKung, Jun;Yoon, Joon-Ho;Woo, Mi-Kyoung;Yeh, Byung-Il;Choi, Jong-Whan;Kim, Hyun-Won
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.169-173
    • /
    • 2007
  • [ $^{31}PNMR$ ] spectroscopy revealed the adenylate kinase-like activity and the phosphotransferase activity from $F_1-ATPase$ of Escherichia coli. Incubation of $F_1-ATPase$ with ADP in the presence of $Mg^{2+}$ shows the appearance of $^{31}P$ resonances from AMP and Pi, suggesting the generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of $F_1-ATPase$ with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase activity of $F_1-ATPase$. Both adenylate kinase-like activity and the phosphotransferase activity has not been reported from $F_1-ATPase$ from Escherichia coli. $^{31}P$ NMR proved that it could be a valuable tool for the investigation of phosphorous related enzyme.

  • PDF

Effects of $Ca^{2+}$ and $HCO_3{^-}$ on Capacitation, Hyperactivation and Protein Tyrosine Phosphorylation in Guinea Pig Spermatozoa

  • Huang, Jing-yan;Wang, Gen-lin;Kong, Li-juan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.181-186
    • /
    • 2009
  • In our previous report, we demonstrated that the tyrosine phosphorylation of sperm proteins (TPSP) of guinea pig was associated with capacitation and hyperactivation (CAHA), and $Ca^{2+}$ and ${HCO_3}^-$ were required for the initiation of CAHA and increasing the TPSP. The aim of this study was to further investigate the mechanism underlying the above events. The results showed that addition of cAMP agonists, dibutyryl-cAMP (db-cAMP) and isobutyl-methylxantine (IBMX), to ${HCO_3}^-$ -free medium significantly increased CAHA to the normal level (when sperm were incubated in TALP). Although addition of the cAMP agonists to $Ca^{2+}$-free medium increased CAHA, the percentages of hyperactivated and capacitated sperm were still significantly lower than the normal level. Compared with ${HCO_3}^-$ -free or $Ca^{2+}$-free medium, TPSP was increased when db-cAMP and IBMX were added in the media. H-89, a specific inhibitor of protein kinase A (PKA), inhibited CAHA in a dose-dependent manner and totally blocked TPSP. These results confirm a previous observation that $Ca^{2+}$ and ${HCO_3}^-$ regulated CAHA and TPSP in a cAMP/PKA pathway, and support an interation between TPSP and CAHA of sperm. Besides the cAMP/PKA pathway, $Ca^{2+}$ might have also played a role in regulating CAHA by other pathways since the normal level of CAHA did not recover by adding cAMP agonists in the media.

AMP-activated Kinase Regulates Adipocyte Differentiation Process in 3T3-L1 Adipocytes Treated with Selenium (AMP-activated protein kinase가 셀레늄으로 처리된 3T3-L1 지방세포의 분화과정 억제에 관한 연구)

  • Park, Song-Yi;Hwang, Jin-Taek;Lee, Yun-Kyoung;Kim, Young-Min;Park, Ock-Jin
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Selenium was investigated using human origin preadipocytes to see whether it possesses preventive or therapeutic effects for obesity. Unveiling the potential of selenium in the reduction of adipogenesis can help predict the therapeutic capabilities of selenium in obesity. In the present study, the molecular mechanism of the inhibition of adipogenesis by selenium was explored to unravel the involvement of the AMP-activated protein kinase. There is emerging evidence that AMPK, a sensor of cellular energy status, is a possible molecular target of controlling adipocyte differentiation on the basis of discovery that AMPK is responsible for the major metabolic responses to exercise, and integration of nutritional and hormonal signals to modulate feeding behavior or energy expenditure in the hypothalamus. Treatment of selenium resulted in inhibition of the adipocyte differentiation process and induction of mature apoptosis in 3T3-L1 adipocytes. We hypothesized that selenium may exert anti-adipogenic potential though modulating AMPK. We have found that selenium significantly activated AMPK and phosphorylated its substrate acetyl-CoA carboxylase ($ACC-serine^{79}$) during the inhibitory process of adipocytes. Also, the inhibition process of adipocyte differentiation by selenium was comparable to either reveratrol or a synthetic AMPK activator, AICAR (5-aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside). To evaluate the involvement of AMPK in anti-lipogensis, we applied AICAR and Compound C, an AMPK inhibitor, to 3T3-L1-adipocytes and found that AMPK is required for the adipocyte differentiation blocking process. These results suggest that selenium has a potential to control adipogenesis and that this effect is mediated by AMPK, an essential kinase for both inhibition of adipocyte differentiation and apoptosis of mature adipocytes.