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Phosphoryl Transferring Activity was Revealed from F;-ATPase of
Escherichia coli by *'P NMR Investigation
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'PNMR spectroscopy revealed the adenylate kinase-like activity and the phosphotransferase activity from F;-ATPase
of Escherichia coli. Incubation of F;-ATPase with ADP in the presence of Mg”* shows the appearance of 3P resonances
from AMP and Pi, suggesting the generation of AMP and ATP by adenylate kinase-like activity and the subsequent
hydrolysis to Pi. Incubation of F;-ATPase with ADP in the presence of methanol shows additional peak from methyl

phosphate, suggesting phosphotransferase activity of F-ATPase. Both adenylate kinase-like activity and the
phosphotransferase activity has not been reported from F;-ATPase from Escherichia coli. *'P NMR proved that it could
be a valuable tool for the investigation of phosphorous related enzyme.
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INTRODUCTION

Oxidative phosphorylation in Escherichia coli is catalyzed
by an electron transport system that generates a proton
electrochemical gradient across the cytoplasmic membrane
and an ATP synthase enzyme that catalyzes the conversion
of ADP and Pi to ATP at the expense of a gradient of
sufficient magnitude. The ATP synthase of this organism is
essentially identical to that found in other bacteria, the
mitochondria of eukaryotes and the thylakoids of green
plants (Senior and Wise, 1983; Senior, 1988; Futai et al.,

1989, Penefsky and Cross, 1991; Senior, 1992; Boyer, 1993).

Two functionally distinct parts of the protein can be distin-
guished. These are: (i) the Fy sector, which, in the case of
E. coli, comprises three polypeptide chains known as a, b
and c, which together form a transmembrane proton channel,

and (ii) F; sector which contains five polypeptide chains
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with relative stoichiometry a;B5y5e.

A considerable number of investigations on F,-ATPases
from many sources, bacteria, thylakoids and mitochondria,
have established that there are at least two and plausibly
three catalytic sites, and a further set of non-catalytic sites
(Boyer, 1993). In general, it is considered that this type of
enzyme has six sites of which half are catalytic and half
have some other non-catalytic function. This is confirmed
by the recent structural study of F; (Abrahams et al., 1994).
The non-catalytic sites have the characteristics that exchange
of the bound ligand for ligand in the medium is slow (t;, ~
hours) and there is considerable specificity for adenine
nucleotides (Cross and Nalin, 1982; Senior, 1988; 1992).
In contrast, the catalytic sites are not adenine-specific and
rapidly exchange bound ligand with ligand in the medium
(ty, ~ minutes) (Cross and Nalin, 1982; Perlin et al., 1984,
Wise et al., 1983).

The inherent adenylate kinase activity of Fi-ATPase
was so far only reported from F;-ATPase of chloroplast
(Mouudrianakis and Tiffert, 1976, Carr et al., 1990). The
significance of the finding that F;-ATPase can transfer the
terminal phosphoryl group from one bound nucleoside

diphosphate to another lies in the implication of similarities
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in nucleotide binding and possible mechanism between
F)-ATPase and adenylate kinase. In the present investigation
’'P NMP spectroscopy was used to find the adenylate
kinase-like activity and the phosphotransferase activity of
F,-ATPase from E. coli.

MATERIALS AND METHODS
1. Growth of cells

E. coli strain SWMI, which is an overproducer of F-
ATPases, was obtained from Dr. A. Senior (University of
Rochester). Glyphosate, EN:(phosphonomeﬁIyl)giYéﬁié], was
a gift from Dongbuhannong Chemical. 5-fluorotryptophan
was purchased from Sigma. All other chemicals were
reagent grade from commercial grade. For preparation of
the enzyme, cells were grown in large batch culture using
M9 media to which was added 1 ml of a concentrated trace
element solution (14 mM ZnSO,, 1 mM MnSO,, 4.7 mM
CuSO,, 2.5 mM CaCl, and 1.8 mM FeCl,) per liter. After
sterilization, 1 ml of sterile | M MgSO, was added per liter
with other growth supplements as follows; 30 mM glucose,
0.2 pM thiamine hydrochloride, 0.8 mM L-arginine hydro-
chloride and 0.2 mM uracil. Glyphosate (1 g/l), chloram-
phenicol (60 mg/ml), 10 uM p-benzoic acid, tyrosine (50
mg/1), phenylalanine (50 mg/l) and S-fluorotryptophan (36
mg/l) was added as filter-sterilized solutions just before
inoculation. 1.5 liter cultures in L-broth were grown over-
night and used to inoculate 25 liters of medium in a New
Brunswick Scientific Pilot Fermentor. From the growth
curve it was determined that the tryptophan content (approx.
150 mg) in 1.5 liters of L-broth was the lowest quantity of
tryptophan that provided non-limiting concentration from
growth. Cells were grown at 37°C with vigorous aeration
and pH was maintained at 7.2 through controlled addition
of 2.5 M NaOH solution. Cell growth was monitored from
absorbance at 750 nm. When the mid-exponential phase
growth was reached, cells were harvested using an Amicon

concentrator.
2. Preparation of enzyme

F)-ATPase was prepared as described previously (Jung
and Kim, 1998; Lee et al., 2000). Enzyme was stored at

-20°C in column buffer which contained Tris/HCI (50 mM,
pH 7.4), 1.0 mM ATP, 1 mM DTT, 2 mM EDTA/Na and
10% glycerol. Activity was measured using a steady state
coupled assay with pyruvate kinase and lactate dehydro-
genase Ting and Wang (1980). Protein was determined by
the Bradford microassay procedure (Bradford, 1976) using
heat denatured F,-ATPase as a protein standard. All the

chemicals used were reagent grade from commercial sources.
3. NMR spectrometers and operating conditions

ADP (10 mM) was incubated with 1mg of F;-ATPase in
the absence or in the presence of methanol at 25C. *'P
NMR spectra were obtained at 338.79 MHz (360 MHz 'H).
All spectra were taken with 2.5 ml samples in a 10 mm
diameter tube. A capillary insert containing D,0 was used
as an internal field frequency lock. All the spectra were
obtained using pulse-and-collect sequence with 50°C pulse
and interpulse delay of 2 s at 25°C without sample spinning
and with a sweep width of 8000 Hz with 500 data points.
85% Phosphoric acid was used as an external reference for

measuring the *'P chemical shifts.
RESULTS

Fig. 1 shows *'P resonances from the incubation of ADP
with F-ATPase from E. coli. The incubation of ADP with
F-ATPase in the presence of MgCl, caused resonances at
3 ppm and 4.2 ppm to appear. Comparison with the *'P
NMR spectrum of the standard mixture of ADP, ATP, AMP
and Pi shows that the resonances at 3 ppm and 4.2 ppm
corresponds to the *'P resonance from AMP and Pi. The
intensity of both resonances increased very slowly as in-
cubation continued up to 20 hours. A very tiny resonance
also appeared at -18.3 ppm which is the position of the
resonance of B-phosphate of ATP. As there were initially
only ADP molecules in the medium, these results suggest
that the resonances of AMP and ATP were produced by
adenylate kinase-like activity of F-ATPase. Pi must be pro-
duced by the hydrolysis of ATP produced. The incubation
of ADP with F,-ATPase in the absence of MgCl, showed
only very tiny resonances at 3 ppm and 4.2 ppm even after

20 hours of incubation, indicating adenlyate kinase-like
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In the absence of methanol
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Fig. 1. ADP (10 mM) was incubated with 1 mg of F;-ATPase
in the absence of methanol. *'P spectra were acquired with a
simple pulse-and-collect sequence using 50° excitation pulse and
an interpulse delay of 2 sec. 500 scans were accumulated for each
spectrum.

activity of F,-ATPase requires Mg”".

The experiment was repeated with the addition of 10%
methanol, normally added as a stabilizing agent of F;-
ATPase (Fig. 2). Incubation of ADP with F;-ATPase from
E. coli in the presence methanol caused a third resonance at
5.2 ppm as well as the resonances of AMP and 7i to appear.
The resonance at 5.2 ppm is must originate from a transfer
of phosphoryl group to a possible acceptor molecule in the
medium, which is added methanol. Thus, the resonance at
5.2 ppm could be identified as the resonance from methyl
phosphate. The appearance of new resonance at 5.2 ppm
shows that the phosphoryl group of ADP was enzymatically
transferred to methanol producing methyl phosphate. Like
adenylate-kinase like activity, phosphoryl transferring acti-
vity of F;-ATPase generating methyl phosphate could not

In the presence of methanol
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Fig. 2. ADP (10 mM) was incubated with 1 mg of F -ATPase
in the presence of 10% methanol (v/v). *'P spectra were acquired
with a simple pulse-and-collect sequence using 50° excitation pulse
and an interpulse delay of 2 sec. 500 scans were accumulated for
each spectrum.

be observed in the absence of Mg™".
DISCUSSION

The peak height of the *'P resonances of AMP and Pi
was almost same when F;-ATPase was incubated with ADP
in the absence of methanol (Fig. 1). However, the relative
peak height of Pi was higher than that of AMP and methyl
phosphate (methyl phosphate at 5.2 ppm: Pi at 4.2 ppm:
AMP at 3.0 ppm = 1:2:1) when F,-ATPase was incubated
with ADP in the presence of methanol (Fig. 2). This may
suggest each AMP and methyl phosphate was produced
equally with production of ATP which is re-hydrolyzed to
phosphate. The transphorylaton activity to ethanol and gly-

cerol had been previously observed from acid phosphatases
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of a Citrobacter sp., but never been reported in F;-ATPases
from various sources (Jeong et al., 1994).

Considering extremely slow generation of AMP which
is an end product, the appearance of the resonance from
B-phosphate of ATP at -18.3 ppm suggests that F;-ATPase
must be inhibited very strongly by ADP in the presence of
Mg?**. Although F,-ATPase from various sources showed
strong inhibition following binding of ADP in the presence
of Mg*" (Drobindskaya et al., 1985; Yoshida and Allison,
1986), it has not been so far reported in F;-ATPase from E.
coli. The inhibition of F;-ATPase from E. coli by incuba-
tion with ADP in the presence of Mg®* was not detected in
the steady state coupled assay with pyruvate kinase and
lactate dehydrogenase. The inhibition may be very weak
and reversed quickly during hydrolysis in the presence of
excess ATP in the assay condition.

The significance of the finding that F;-ATPase can transfer
the terminal phosphoryl group form one bound nucleoside
diphospahte to another lies in the implication of similarities
in nucleotide binding and possible mechanism between
F|-ATPase and adenylate kinase. Di (adenosine-5") penta-
phosphate which is an inhibitor of adenylate kinase also
inhibit mitochondrial F,-ATPase (Vogel and Cross, 1991).
This supports a model for the structure of nucleotide binding
sites on F|-ATPase which places catalytic site and non-
catalytic site in close proximity in an orientation analogous
to ATP and AMP binding sites on adenylate kinase. As the
normal catalytic reaction pathway does not include a trans-
phosphorylation reaction (Webb et al, 1980), the slow
transphosphorylation reaction between sites observed in
the present investigation may play a regulatory role.

The observed adenlyate kinase-like activity and the pho-
sphotransferase activity of F,-ATPase from E. coli was so
low that it could not be detected with ordinary enzyme
assay system. >'P NMR proved that it could be a valuable
tool for the investigation of phosphorous related enzyme.
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