• Title/Summary/Keyword: AMOLED Display

Search Result 188, Processing Time 0.027 seconds

Development of IGZO TFTs and Their Applications to Next-Generation Flat-Panel Displays

  • Hsieh, Hsing-Hung;Lu, Hsiung-Hsing;Ting, Hung-Che;Chuang, Ching-Sang;Chen, Chia-Yu;Lin, Yusin
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.160-164
    • /
    • 2010
  • Organic light-emitting devices (OLEDs) have shown superior characteristics and are expected to dominate the nextgeneration flat-panel displays. Active-matrix organic light-emitting diode (AMOLED) displays, however, have stringent demands on the performance of the backplane. In this paper, the development of thin-film transistors (TFTs) based on indium gallium zinc oxide (IGZO) on both Gen 1 and 6 glasses, and their decent characteristics, which meet the AMOLED requirements, are shown. Further, several display prototypes (e.g., 2.4" AMOLED, 2.4" transparent AMOLED, and 32" AMLCD) using IGZO TFTs are demonstrated to confirm that they can indeed be strong candidates for the next-generation TFT technology not only of AMOLED but also of AMLCD (active-matrix liquid crystal display).

a-Si Process-based Advanced SPC TFT for AMOLED Application

  • Lee, Seok-Woo;Lee, Sang-Jin;Ahn, Tae-Joon;Park, Soo-Jeong;Kang, Su-Hyuk;Jung, Sang-Hoon;Lee, Hong-Koo;Kim, Sung-Ki;Park, Yong-In;Kim, Chang-Dong;Yang, Myoung-Su;Kang, In-Byeong;Hwang, Yong-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.961-963
    • /
    • 2009
  • a-Si process-based advanced-SPC (a-SPC) TFT has been developed and verified by manufacturing an AMOLED panel having improved cost competitiveness by using the existing a-Si infrastructure. The a-SPC TFT had superior device reliability and current drivability to a-Si TFT to meet the requirements of AMOLED backplane.

  • PDF

Analysis of Low Power Consumption AMOLED Displays on Flexible Stainless Steel Substrates

  • Hack, Mike;Hewitt, Richard;Ma, Ray;Brown, Julie J.;Choi, Jae-Won;Cheon, Jun-Hyuk;Kim, Se-Hwan;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.58-61
    • /
    • 2007
  • We present simulations and results to demonstrate the viability of stainless steel foil as a substrate for low power consumption, flexible AMOLED displays. Using organic planarization layers, we achieve very smooth surface properties, resulting in excellent TFT performance, that can be repetitively flexed without significantly affecting device performance. The use of phosphorescent OLEDs enables the design of low power consumption 40" AMOLED displays.

  • PDF

Color and Luminance Compensation for Large AMOLEDs

  • Park, Kyong-Tae;Arkipov, Alexander;Lee, Baek-Woon;Kim, Seon-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.850-853
    • /
    • 2009
  • Many well-known pixel compensation circuits have been applied to control TFT $V_{th}$ variations on small size AMOLED panels. For large (>30-inch) AMOLEDs, luminance and color uniformity are affected by TFT variations, but also by ELVDD IR drop and cavity non-uniformity which are not easily compensated by in-pixel circuits. AMOLED panels may also suffer from manufacturing-induced mura. An external compensation method based on optical measurements is proposed and applied to large AMOLED panels. It improves luminance uniformity by up to 95% at 200nits and color uniformity by up to 99% (${\Delta}$u'v' <0.004) on large AMOLED panels, and provides-increased margin against processinduced mura.

  • PDF

Invited Paper: Oxide Thin Film Transistors for Use as Next Generation Active Matrix Backplanes

  • Kim, Hye-Dong;Park, Jin-Seong;Mo, Yeon-Gon;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.35-37
    • /
    • 2009
  • In this work, we introduce new next generation activematrix backplane technologies for large-size AMOLED displays. Among the general requirements for successful market launch of AMOLED TVs, backplane issues are discussed. It will be shown that the amorphous oxide TFT is most suitable due to large scalability and superior cost effectiveness. Development status and current challenges of amorphous oxide TFTs are discussed.

  • PDF

4 inch QVGA AMOLED display driven by GaInZnO TFT

  • Kwon, Jang-Yeon;Son, Kyoung-Seok;Jung, Ji-Sim;Kim, Tae-Sang;Ryu, Myung-Kwan;Park, Kyung-Bae;Kim, Jung-Woo;Lee, Young-Gu;Kim, Chang-Jung;Kim, Sun-Il;Park, Young-Soo;Lee, Sang-Yoon;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.141-144
    • /
    • 2007
  • We demonstrated 4 inch QVGA AMOLED display driven by GaInZnO TFT. The structure of GaInZnO TFT is back channel etch (BCE) which is conventional structure for a-Si TFT. The electron mobility of GaInZnO TFT is $2.6\;cm^2/Vs$ and Vt is 3.8V. It is thought that GaInZnO TFT could be backplane for AMOLED TV.

  • PDF

AMOLED Display Technologies and Recent Trends - Focusing on Flexible Display Technology - (AMOLED 디스플레이 주요 기술 및 최근 동향 - 플렉서블 디스플레이 기술 위주로 -)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Starting with cathode ray tubes, displays are forming markets in the order of active marix organic light emitting diode (AMOLED) after PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). OLED is recognized as a key field for the development of each country preparing for the fourth industrial revolution, and especially Samsung Display and LG Display, which are the top industries in Korea, are leading the market with more than 90% of OLED shares. Currently, AMOLED has moved to the area that can be folded or bent. This technology is possible because TFT (Thin Film Transistor) and OLED may be formed on a flexible substrate. In the future, the technology will move to stretchable displays, and for this, the development of substrate materials is first, and then TFT and OLED devices should also be implemented with stretchable materials.

2.2" Digital driving AMOLED One-chip Solution for Mobile Application

  • Bae, Han-Jin;Kim, Seung-Tae;Lim, Ho-Min;Ha, Won-Kyu;Lee, Jae-Do;Kim, Ji-Hun;Kim, Hak-Su;Han, Chang-Wook;Tak, Yoon-Heung;Ahn, Byung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.127-130
    • /
    • 2008
  • A 2.2" QVGA($320{\times}240$) 262,114 color AMOLED module has been developed using digital driving methodology. In this paper, we discuss the development of diver IC which is applied to Digital AMOLED module. Technologies for low cost IC structure and image quality enhancement are presented.

  • PDF

A High Aperture Ratio TFT Design for Bottom Emission Type AMOLED

  • Chien, Yao Hong;Huang, Jack
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.711-714
    • /
    • 2004
  • A new design for improving the aperture ratio of bottom emission type AMOLED is investigated. In conventional, the TFT of AMOLED fabrication method is "Etch Stopper (7-mask)", so the aperture ratio is limited in 28${\sim}$33% by Cs(Storage Capacitor). A high aperture ratio TFT is designed by using BCE(Back Channel Etching 5-mask) fabrication way and the aperture ratio is up to 40% shown in 2.2"AMOLED display.

  • PDF

Full-Color AMOLED with RGBW Pixel Pattern

  • Amold, A.D.;Hatwar, T.K.;Hettel, M.V.;Kane, P.J.;Miller, M.E.;Murdoch, M.J.;Spindler, J.P.;Slyke, S.A. Van;Mameno, K.;Nishikawa, R.;Omura, T.;Matsumoto, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.808-811
    • /
    • 2004
  • A full-color AMOLED display with an RGBW color filter pattern has been fabricated. Displays with this format require about $^1/_2$ the power of analogous RGB displays. RGBW and RGB 2.16inch diagonal displays with average power consumptions of 180 mW and 340 mW, respectively, are demonstrated for a set of standard digital still camera images at a luminance of 100 cd/$m^2$. In both cases, a white-emitting AMOLED is used as the light source. The higher efficiency of the RGBW format results because a large fraction of a typical image can be represented as white, and the white sub-pixel in an RGBW AMOLED display is highly efficient because of the absence of any color filter. RGBW and RGB AMOLED displays have the same color gamut and, aside from the power consumption difference, are indistinguishable.

  • PDF