• Title/Summary/Keyword: ALOHA program

Search Result 21, Processing Time 0.031 seconds

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features (복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여)

  • HEEKYUNG PARK;MINCHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

Experimental Study of Capture Effect for Medium Access Control with ALOHA

  • Kosunalp, Selahattin;Mitchell, Paul D.;Grace, David;Clarke, Tim
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.359-368
    • /
    • 2015
  • In this paper, we investigate the capture effect through experiments conducted with Iris nodes equipped with AT86RF230 radio transceivers. It is shown that the first arriving packet in a collision can capture the radio channel for equal power transmissions and may be decoded depending on the amount of overlap. A new 3-packet-capture scenario is introduced and implemented. To be able to understand the impact of capture on the throughput performance of wireless sensor networks, we present an analysis of the capture coefficient using our practical results. For real-world implementations, the throughput of pure ALOHA considering a finite number of users is presented in analytical form. The capture coefficient is then applied to pure ALOHA as a case study. Using analytical and practical implementations of the capture effect on ALOHA, a very good match in channel throughput performance enhancement is demonstrated over the non-capture effect case. TinyOS-2.x is used to program the nodes and to observe data exchange on a computer through a base station.

Analysis of Impact Zone of Quantitative Risk Assessment based on Accident Scenarios by Meteorological Factors (기상요소별 사고 시나리오에 따른 정량적 위험성평가 피해영향범위 분석)

  • Kim, Hyun Sub;Jeon, Byeong Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.685-688
    • /
    • 2017
  • Using ALOHA and PHAST Program, it was modeled assuming the leakage accident scenarios of chlorine which is designated as accident preparation chemical in chemical control act. End-point distances corresponding to ERPG-2 concentrations were calculated while varying annual mean temperature, wind speed, humidity, and atmospheric stability. The calculated endpoint distance values were compared and the correlation with each meteorological factor was analyzed. And we also investigated strengths and weaknesses of ALOHA and PHAST. The results show that ALOHA has little or no correlation with annual average temperature, humidity and it has a large correlation with wind speed and atmospheric stability. In the case of PHAST, the end-point distances were correlated with all the meteorological factors such as average annual temperature, wind speed, humidity, and atmospheric stability, Among them, the effect of atmospheric stability were the largest.

A Study on the Reasonable Estimation of Consequence of Chemical Release (화학사고 피해영향 범위의 합리적 산정방안에 대한 연구)

  • Cho, Guysun;Lim, Juntaig;Han, Jeongwoo;Baek, Eunsung;Yu, Wonjong;Park, Kyoshik
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.20-28
    • /
    • 2020
  • In this study, the damage impact range in the case of a hydrofluoric acid leak accident was predicted using formula calculation, impact assessment simulations, and CFD simulations, and the results were compared and analyzed with the actual environmental impact report. Formula calculation was performed by using the leak source model and diffusion model. Impact assessment simulation was performed by KORA provided by the Korean Ministry of Environment, ALOHA by the United States Ministry of Environment, and PHAST, which is relatively widely used among commercialization programs, and the STAD-CMM+program for CFD simulation. Was utilized. Considering convenience, speed, acceptability, and economics from the user's perspective, ALOHA and KORA were the most appropriate methods for predicting the impact of hydrofluoric acid leakage. In addition, the results of this study will help to reduce unnecessary regulations in the process of government policy development and optimize the investment in the safety field of the company, effectively utilizing the limited resources of the government and the company.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

Risk Assessment Based on Highway Hydrogen Chloride Gas Leakage Scenario Using GIS (GIS를 활용한 고속도로 염화수소 가스 누출 시나리오 기반 리스크 평가)

  • Kim, Kuyoon;Lee, Jaejoon;Yun, Hongsik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.591-601
    • /
    • 2021
  • As the domestic chemical industry continues to develop, handling and transportation of chemicals increases every year. Road freight in Korea accounts for more than 90%, and most of the chemical transportation is done through roads. These chemical vehicles can lead to major accidents if accidents occur. Transportation vehicles are likely to cause water pollution and soil pollution, which are factors of environmental damage, as well as traffic accidents that are the primary damage. In this work, we write a scenario for hydrogen chloride gas leakage by setting Banpo IC and Seocho IC sections as research areas, and use the ALOHA program to measure the predicted distance and analyze the time when hydrogen chloride gas reached according to the distance. In addition, risk assessment using population density was carried out for areas of damage caused by time using GIS. This suggests the need for prevention and countermeasures in areas of damage.

Study on the Recovery Process and Risk Management for Fusion Hydrogen Isotopes (핵융합 수소동위원소의 회수공정과 위험관리에 관한 연구)

  • Jung, Woo-Chan;Moon, Hung-Man;Chang, Min-Ho;Lee, Hyeon-Gon;Hwang, Myung-Whan;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.81-89
    • /
    • 2019
  • This study deals with a process for recovering hydrogen isotopes from fusion exhaust gas. The goal of this process is to remove impurities, maximally recover only pure hydrogen isotopes. Experiments using hydrogen and deuterium were conducted to confirm the possibility of the recovery of hydrogen isotopes. In the exhaust gas containing H2, impurities was removed in the membrane process, and only pure H2 was recovered. And the H2 in the exhaust gas of the He-GDC(Glow Discharge Cleaning) process was recovered using a cryogenic adsorption process. In addition, HAZOP analysis was performed for qualitative risk assessment. For scenario analysis, the damage prediction ALOHA program was used to calculate the range of influence. Finally measures were sought to improve safety.

Predicting and Preventing Damages from Gas Leaks at LPG Stations (LPG 충전소의 가스누출에 따른 피해예측 및 감소방안)

  • YANG-HO YANG;HA-SUNG KONG
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.577-585
    • /
    • 2023
  • This study applied ALOHA Program to predict the damage caused by fire and explosion predicted to occur from gas leakage at LPG stations and presented plans to prevent damages by diagramming the impact range and distance. The propane gas leakage from LPG stations causes human damage like breathing issues and property damage, including building destruction to residents in the surrounding areas. As a way to reduce this, first, the hazardous substance safety manager of the LPG station needs to check frequently whether the meters and safety valves are working properly to prevent leakage in advance. Second, the LPG stations' storage tanks should be worked by the person who received "hazardous substance safety manager training" under the provisions of the Act on the Safety Control of Hazardous Substances and has been appointed as a "hazardous substance safety manager" by the fire department. Third, LPG station's various safety device functions, such as overfill prevention devices, must be checked on a regular basis. Finally, wearing work clothes and shoes that prevent static electricity at LPG stations is highly recommended, as static can cause a fire when gas leaks.

A Study on the Simplified Estimating Method of Off-site Consequence Analysis for Aqueous Ammonia (암모니아수의 농도별 간이 영향평가 방법 연구)

  • Jung, Yu-kyung;Heo, Hwajin;Yoo, Byungtae;Yoon, Yi;Yoon, Junheon;Ma, Byungchol
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Aqueous ammonia is widely used in household cleaners, fertilizers and denitrification process. It is usually treated in concentrations from 10 % to 30 %, and release accidents have occurred frequently. In this study, we developed a simplified estimating method and equation to calculate threat zone easily in case of emergency due to release accident of aqueous ammonia. We calculated the consequence distance for toxic endpoints of aqueous ammonia(concentration 10 % ~ 30 %) at different puddle areas($1m^2{\sim}500m^2$) using the ALOHA program. Based on the result, we analyzed the relationship between concentration and puddle area with the threat zone and created the equation.