• 제목/요약/키워드: ALE formulation

검색결과 36건 처리시간 0.017초

차분격자볼츠만법에 ALE모델을 적용한 이동물체 주위의 흐름 및 유동소음의 수치모사 (Computations of Flows and Acoustic Wave Emitted from Moving Body by ALE Formulation in Finite Difference Lattice Boltzmann Model)

  • 강호근
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.48-54
    • /
    • 2006
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in the finite difference lattice Boltzmann method. Some effects are checked by comparing flaw about a square cylinder in ALE formulation and that in the fixed coordinates, and both agree very well. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer region is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in two- and three-dimensional cases are simulated.

ALE모델을 갖는 차분격자볼츠만법에 의한 이동물체 주위의 유동장 및 유동소음의 직접계산 (Direct Simulation of Flows and Flow Noise around Moving Body by FDLBM with ALE Model)

  • 강호근;;김명호;김유택;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.248-249
    • /
    • 2005
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in FDLBM. The effect of the ALE is checked by comparing flow about a square cylinder in ALE formulation and that in the fixed coordinates, and the results show good agreement. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer zone is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in 2- and 3-dimensional cases are simulated.

  • PDF

A new ALE formulation for sloshing analysis

  • Aquelet, N.;Souli, M.;Gabrys, J.;Olovson, L.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.423-440
    • /
    • 2003
  • Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. "Fuel slosh" can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a "sloshing resonance" is generated. These sloshing events can in turn affect the overall performance of the parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh has been developed to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level. Following the explanation, the analysis capabilities are validated against theoretical using potential flow for calculating fuel slosh frequency.

포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화 (Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description)

  • 박대효;정소찬;김원철
    • 한국지반환경공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.5-10
    • /
    • 2003
  • 다공질 매체 속의 내부 구조를 이루고 있는 고체 부분과 유체 부분은 서로 다른 재료특성을 가지는 물체들로 구성되어 있고 각 구성물들은 서로 다른 물리적 성질과 화학적 성질을 가지면서 서로 다른 상대 속도를 가지고 이동하기 때문에 포화된 다공질 매체의 구조적 변형 거동을 해석하는 것은 매우 복잡하다. 변형 거동에 영향을 주는 여러 가지 복합적인 요인들이 고려된 다공질 매체의 변형 거동을 해석하고 규명하기 위하여 Arbitrary Lagrangian Eulerian(ALE) 정식화가 이루어진 구성방정식을 세워야 할 필요가 있다. ALE 정식화는 Lagrangian 요소와 Eulerian 요소의 장점을 최대화 시키고 단점을 최소화 시키는 것에 주안점을 두기 때문에 고체 부분과 유체 부분을 함께 고려해야 하는 다공질 매체의 변형 거동을 해석하는데 있어서 적합한 방법이라고 할 수 있다. 그렇기 때문에 여기서는 포화된 다공질 매체의 보존 법칙들에 대한 ALE 정식화가 이루어진다. 고체 부분과 유체 부분의 질량 보존 법칙에 대하여 ALE 정식화가 이루어진 식이 각각 표현되고 다공질 매체 전체에 대한 운동량 보존 법칙이 표현된다.

  • PDF

분할된 ALE 방법에 의한 평금형 열간압출의 3차원 유한요소해석 (Three-dimensional finite element analysis of hot square die extrusion by using split ALE method)

  • 강연식;양동열
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1912-1920
    • /
    • 1997
  • In the analysis of metal forming process, ALE(Arbitrary Lagrangian Eulerian) finite element methods have been increasingly used for the capability to control mesh independently from material flow. The methods can be divided into two groups i.e., coupled and split formulations. In the present work, the split ALE formulation is used for computational efficiency. A split ALE finite element method developed for rigid-viscoplastic materials and applied to the analysis of hot square die extrusion. Since thermal state greatly affects the product quality, an ALE scheme for temperature analysis is also presented. As computational examples, profile shapes as square and cross-like sections are chosen.

강-점소성 ALE 유한요소 수식화에 근거한 사각형 형재의 평금형 등온 압출에 대한 3차원 해석 (A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of isothermal Square Die Extrusion of a Square Section Based on ALE Description)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 1996
  • In the finite element analysis of metal forming processes the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. however some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work an ALE(arbitrary Lagrangian-Euleria) finite element formulation for deforma-tion analysis are presented fro rigid-viscoplastic materials. The developed finite element program is applied to the isothermal analysis of square die extrusion of a square section. The computational results are compared with those by the updated Lagrangian finite element analysis.

  • PDF

Finite Element Formulation using Arbitrary Lagrangian Eulerian Method for Saturated Porous Media

  • Park, Taehyo;Jung, Sochan
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous media has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of porous media, constitutive models for deformation of porous media coupling several effects such as flow of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of solids and fluids. First of all, governing equations for saturated porous media based on ALE description are derived. Then, weak forms of these equations are obtained in order to implement numerical method using finite element method. Finally, Petrov-Galerkin method Is applied to develop finite element formulation.

  • PDF

ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용 (An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

케이블-막구조물의 요소이동(slip)에 관한 연구 (A Study on the Slipping Problem for Cable-Membrane Structures)

  • 김재열;강주원;박상민
    • 한국공간구조학회논문집
    • /
    • 제8권5호
    • /
    • pp.95-105
    • /
    • 2008
  • 본 논문에서는 케이블-막구조의 요소이동을 고려한 해석 기법을 제시하기 위하여 초기평형형상해석 및 응력해석과 요소이동성을 고려한 해석으로 구분하여 연구함으로서 이론적인 접근을 통해 요소이동성을 평가하였으며, 요소이동을 고려한 해석으로 ALE(Arbitrary Lagrangian-Eulerian) 유한요소법을 이용하여 작성된 알고리즘을 제시하여 다양한 예제의 검증을 통해 제안방법을 평가하였다.

  • PDF