• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.031 seconds

Effects of IR Reduction Design on RCS of UCAV (IR 저감 설계가 무인전투기의 RCS에 미치는 영향)

  • Song, Dong-Geon;Yang, Byeong-Ju;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • The role of UCAV is to carry out various missions in hostile situations such as penetration and attack on the enemy territory. To this end, application of RF stealth technology is indispensable so as not to be caught by enemy radar. The X-47B UCAV with blended wing body configuration is a representative aircraft in which modern RCS reduction schemes are heavily applied. In this study, a model UCAV was first designed based on the X-47B platform and then an extensive RCS analysis was conducted to the model UCAV in the high-frequency regime using the Ray Launching Geometrical Optics (RL-GO) method. In particular, the effects of configuration of UCAV considering IR reduction on RCS were investigated. Finally, the effects of RAM optimized for the air intake of the model UCAV were analyzed.

Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes (다양한 형상에 따른 타원형 핀-튜브 열교환기의 열전달 특성에 관한 수치해석)

  • Yoo, Jae Hwan;Yoon, Jun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (AR), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CFD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1-5 m/s. RSM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the AR and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

Stable Mass-Spring Model for Real-time Animation of Flexible Objects (비정형 물체의 실시간 애니메이션을 위한 안정적 질량-스프링 모델)

  • Gang, Yeong-Min;Jo, Hwan-Gyu;Park, Chan-Jong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • In this paper, we propose an efficient technique for the animation of flexible thin objects. Mass-spring model was employed to represent the flexible objects. Till now, many techniques have used the mass-spring model to generate plausible animation of soft objects. A straight-forward approach to the animation with mass-spring model is explicit Euler method, but the explicit Euler method has serious disadvantage that it suffers from 'instability problem'. The implicit integration method is a possible solution to overcome the instability problem. However, the most critical flaw of the implicit method is that it involves a large linear system. This paper presents a fast animation technique for mass-spring model with approximated implicit method. The proposed technique stably updates the state of n mass-points in O(n) time when the number of total springs are O(n). We also consider the interaction of the flexible object and air in order to generate plausible results.

  • PDF

A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters (실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델)

  • Park, Su-Wan;Ryu, Kwan-Woo;Kim, Eun-Ju;Baek, Nak-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.255-262
    • /
    • 2007
  • Physically-based researches on simulating helicopter motions have been achieved in the field of aeronautics, aerodynamics and others. These results, however, have not been appled in the computer graphics area, mainly due to their complex equations and heavy computations. In this paper, we propose a dynamics model of helicopter rotor blades, which would be easy to implement, and suitable for real-time simulations of helicopters in the computer graphics area. Helicopters fly by the forces due to the collisions between air and rotor blades. These forces can be interpreted as the impulsive forces between the fluid and the rigid body. Based on these impulsive forces, we propose an approximated dynamics model of rotor blades, and it enables us to simulate the helicopter motions using existing rigid body simulation methods. We compute forces due to the movement of rotor blades according to the Newton's method, to achieve its real-time computations. Our prototype implementation shows real-time aerial navigation of helicopters, which are murk similar to the realistic motions.

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter (확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정)

  • Sung, Jaemin;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2015
  • This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

Development of Evaluation Techniques on Marine Casualties by Ship's Signal Sound Interferences(l) - 3D Sound Field Control Model - (선박신호음 간섭에 따른 해양사고 영향평가기법 개발(1) - 3차원 음장제어 모델 -)

  • Yim Jeong Bin;Jung Jung Sik;Park Seong Hyeon;Kim Chang Kyeong;Sim Yeong Ho;Lee Ku Dong;Choi Ki Yeong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.45-51
    • /
    • 2003
  • The ship's signal sound dispersed by air, obstacles, and noises due to absorption, reflection, and disturbances, respectively. It is one of the factors of marine casualties by misjudgment if receiving direction The last target of this study is to prevent inherent marine casualty using the analysis-evaluation techniques if the interferences of ship's signal sound. In this work, three-dimensional sound field control model is proposed to simulate various sound transmitting characteristics according to sea environments at sea The efficiency test of the model was carried out using VR-based ship simulator.

  • PDF

Implementation and Design of the Framework for Consolidated Transportation Model (공동 수배송 모델을 위한 프레임워크 설계 및 구축)

  • Lee, Myeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.980-985
    • /
    • 2008
  • The environment of IT is, currently, on its developing process to the period of web 2.0 and mashup which not only enable computer and internet to be utilized like the water or the air, but also be a new motivating force for its advance. One of the biggest changes of the industry that lies ahead is consolidated transportation. However, no party outstands as the leading party for nationwide improvement of logistics, nor does the right analysis and design for it. Therefore, successful nationwide logistics model is yet to exist. This study provides individual parties, which consider consolidated transportation model as their implementation and design of the framework, with instructions for logistics information system so that they could be competitive in the market. It also helps companies collect user requirements for logistics information system consolidated transportation, and utilize it for its development. Finally, the study provides a implementation and design of pilot system for consolidated transportation model.

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand (천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.

Performance Analysis of a Desiccant Rotor for Rotational Period in a Desiccant Cooling System (제습냉방시스템의 제습로터 회전주기변화에 따른 제습성능해석)

  • Pi, Chang-Hun;Kang, Byung-Ha;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.523-531
    • /
    • 2012
  • The performance simulation of a desiccant rotor, which is a core component of a desiccant cooling system, was conducted on the basis of a theoretical solution of the heat and mass transfer process in the rotor. The simulation model was validated by comparing simulation results with experimental data; reasonable agreement was observed. The effect of the rotation speed on the performance of the desiccant rotor was investigated for various operation conditions: temperature (50 to $70^{\circ}C$), humidity ratio (0.01 to 0.02 kg/kg DA), and flow rate of regeneration air. The optimum rotation speed was determined from the maximum moisture removal capacity (MRC) of the desiccant rotor, and it was found to vary with the operation conditions. Further, the correlation for the optimum rotation speed was determined by regression analysis.