• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.03 seconds

Epistemological Implications of Scientific Reasoning Designed by Preservice Elementary Teachers during Their Simulation Teaching: Evidence-Explanation Continuum Perspective (초등 예비교사가 모의수업 시연에서 구성한 과학적 추론의 인식론적 의미 - 증거-설명 연속선의 관점 -)

  • Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.109-126
    • /
    • 2023
  • In this study, I took the evidence-explanation (E-E) continuum perspective to examine the epistemological implications of scientific reasoning cases designed by preservice elementary teachers during their simulation teaching. The participants were four preservice teachers who conducted simulation instruction on the seasons and high/low air pressure and wind. The selected discourse episodes, which included cases of inductive, deductive, or abductive reasoning, were analyzed for their epistemological implications-specifically, the role played by the reasoning cases in the E-E continuum. The two preservice teachers conducting seasons classes used hypothetical-deductive reasoning when they identified evidence by comparing student-group data and tested a hypothesis by comparing the evidence with the hypothetical statement. However, they did not adopt explicit reasoning for creating the hypothesis or constructing a model from the evidence. The two preservice teachers conducting air pressure and wind classes applied inductive reasoning to find evidence by summarizing the student-group data and adopted linear logic-structured deductive reasoning to construct the final explanation. In teaching similar topics, the preservice teachers showed similar epistemic processes in their scientific reasoning cases. However, the epistemological implications of the instruction were not similar in terms of the E-E continuum. In addition, except in one case, the teachers were neither good at abductive reasoning for creating a hypothesis or an explanatory model, nor good at using reasoning to construct a model from the evidence. The E-E continuum helps in examining the epistemological implications of scientific reasoning and can be an alternative way of transmitting scientific reasoning.

Prediction of Time-dependent Moisture Diffusion Coefficient in Early-age Concrete (초기재령 콘크리트의 시간 의존적인 수분확산계수 예측에 관한 연구)

  • Kang, Su-Tae;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.141-148
    • /
    • 2005
  • The nonlinear humidity distribution occurs due to the moisture diffusion when a concrete is exposed to an ambient air. This nonlinear humidity distribution induces shrinkage cracks on surfaces of the concrete. Because shrinkage cracks largely affect the durability and serviceability of concrete structures, the moisture diffusion in concrete must be investigated. The purpose of this paper is to propose a model of the moisture diffusion coefficient that governs moisture diffusion within concrete structures. To propose the model, numerical analysis was performed with several experiments. Because the moisture diffusion coefficient is changed with aging, especially at early ages, the proposed model includes aging effect by terms of the porosity as well as the humidity of concrete.

Thermodynamic Properties and Self Diffusions from Rheological Parameters of Eyring-Halsey Model (Eyring-Halsey 모델의 유동파라메타로부터 열역학 성질과 자체 확산)

  • Kim, Nam Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.251-257
    • /
    • 2014
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples were carried out in air and distilled water at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The self diffusion, hole volume, viscosities, and thermodynamic parameters of copolymer samples were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusion, hole volume, viscosities, and thermodynamic parameters of flow segments.

Application of the Internal Degree of Freedom to 3D FDLB Model and Simulations of Aero-Acoustic (3차원 차분격자볼츠만 모델에의 내부자유도 적용 및 유동소음 모사)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Kim, Jeong-Whan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.586-596
    • /
    • 2006
  • A 3-dimensional FDLB model with additional internal degree of freedom is applied for diatomic gases such as air, in which an additional distribution function is introduced. Direct simulations of aero-acoustic by using the applied model and scheme are presented. Speed of sound is correctly recovered. As typical examples, the Aeolian tone emitted by a circular column is successfully simulated even very low Mach number flow. Acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular column is captured. Full three-dimensional acoustic wave past a compact block like pentagon, furthermore, is also emitted in y direction as dipole like sound.

ANALYSIS ON STEAM CONDENSING FLOW USING NON-EQUILIBRIUM WET-STEAM MODEL (비평형 습증기 모델을 적용한 증기 응축 유동 해석)

  • Kim, C.H.;Park, J.H.;Ko, D.G.;Kim, D.I.;Kim, Y.S.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • When the steam is used as working fluid in fluid machinery, different from other gases as air, phase transition (steam condensation) can occur and it affects not only the flow fields, but also machine performance & efficiency. Therefore, considering phase transition phenomena in CFD calculation is required to achieve accurate prediction of steam flow and non-equilibrium wet-steam model is needed to simulate realistic steam condensing flow. In this research, non-equilibrium wet-steam model is implemented on in-house code(T-Flow), the flow fields including phase transition phenomena in convergent-divergent nozzle are studied and compared to results of advance researches.

Dual-Limit Cycle Oscillation of 2D Typical Section Model considering Structural Nonlinearities (구조 비선형을 고려한 이차원 단면 날개 모델의 이중 제한 주기 운동)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.28-33
    • /
    • 2005
  • Nonlinear aeroelastic characteristics of a two dimensional typical section model with bilinear plunge spring are investigated. Doublet-point method(DPM) is used for the calculation of supersonic unsteady aerodynamic forces which are approximated by using the minimum-state approximation. For nonlinear flutter analysis structural nonlinearity is represented by an asymmetric bilinear spring and is linearized by using the describing function method. The linear and nonlinear flutter analyses indicate that the flutter characteristics are significantly dependent on the frequency ratio. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear flutter boundary. The nonlinear flutter characteristics and the nonlinear aeroelastic responses are investigated.

Numerical Simulation of Edge Tone by Finite Difference Lattice Boltzmann Model with Internal Degree of Freedom (내부자유도를 갖는 차분래티스볼츠만 모델에 의한 에지톤의 수치계산)

  • Kang Ho-Keun;Kim Eun-Ra;Oh Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.929-937
    • /
    • 2005
  • A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic 9as such as air is successfully simulated In a weak compressive wane problem and Coutte flow, the validity and characteristics of the applied model are examined. With the model. furthermore. we present a 2-dimensional edge tones to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLB model (I.D.F FDLBM) in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guaranteed the Parabolic velocity profile of a jet at the outlet. and the edges have of an angle of $\alpha$=$23^{0}$ and $20^{0}$. A sinuous instability wane with real frequency resulting from Periodic oscillation of the jet around the edge is propagated on the upper and lower of wedge.

Identification of Fractional-derivative-model Parameters of Viscoelastic Materials Using an Optimization Technique (최적화 기법을 이용한 점탄성물질의 분수차 미분모델 물성계수 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1192-1200
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature. However, the identification procedure of the four-parameter is very time-consuming one. In this study a new identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured frequency response functions(FRF) coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment step. A numerical example shows that the proposed method is useful in identifying the viscoelastic material parameters of fractional derivative model.

Internal Flow Aerodynamic Test of a Mach 5 Scramjet Engine (마하 5 스크램젯 엔진의 내부 유동 공력 시험)

  • Yang, In-Young;Lee, Yang-Ji;Kim, Young-Moon;Lee, Kyung-Jae;Kang, Sang-Hoon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.584-587
    • /
    • 2011
  • An internal flow aerodynamic test was performed for a Mach 5 scramjet engine. The test was done without fuel injection, as a preliminary test for the combustion test. Test engine is an engineering model with intake cross-section of $70mm{\times}200mm$ and total length of 1.7m. Test facility is a blowdown-type, high enthalpy, hypersonic facility. 19 pressures were measured through the holes on the model surface along the engine internal flow passage. It was found that the facility start is possible, and also supersonic flow is maintained inside the engine.

  • PDF

Prediction on heat and mass transfer coefficients in a packed layer of a regenerator with a solar desiccant cooling system (태양열제습냉방시스템 중 재생기의 충진층 내 열물질 전달계수에 관한 예측)

  • Eflita, Yohana;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.36-42
    • /
    • 2010
  • 본 논문은 태양열이용 냉난방시스템 중에서 실제로 액체흡수제를 재생하는 재생탑 내의 충진층에 있어서의 열 및 물질전달의 실험치와 이론적 해석에 의한 결과치와의 비교를 나타내고 있다.특히 물질전달의 극대화를 위하여 충진층 내에서 공기와 흡수제의 접촉면적을 크게 할 필요가 있는데,이를 위해서 본 실험에서는 직경이 3cm인 플라스틱제 충진재를 사용하였으며, 흡수제로는 저농도의 염화리튬 수용액이 사용 되었다. 충진층 내에서의 최적 높이를 예측하기 위하여 해석의 모델인 실험장치를 직접 제작하여 실험을 수행하였고, 이론 해석에 있어서 체적 열전달을 고려한 정상상태를 모델화하여 해석하였다. 이 결과, 충진층 내에서 실험치와 이론적인 계산치가 잘 일치함을 알 수 있었으며, 충진층의 높이가 2m 이상인 경우에는 높이에 따른 재생량의 차이가 없어서 없음을 알 수 있었다.