• Title/Summary/Keyword: AIN ceramics

Search Result 18, Processing Time 0.018 seconds

AIN Microstructure Evalution through Hg-porosimetry (수은침투법을 이용한 AIN 미세구조연구)

  • Lee, Hae-Weon;Yoon, Bok-Gyu;Hong, Kug-Sun
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.217-222
    • /
    • 1992
  • An attempt was made to analyze green microstructure of AIN samples prepared by slip casting and dry pressing through Hg-porosimetry. Slip cast samples with narrow pore size distribation and high packing density showed higher sinterability and homogeneous distribution of second phase(s). Hg-porosimetry is and effective way to determine pore structure if "ink bottle" phenomenon does not occur. A comparison study with porosity measurement by quantitative microscopy showed that the effectiveness of Hg-porosimetry measurement could be extended to higher sintered density as long as pores remained open.

  • PDF

Effects of SiO2 on the High Temperature Resistivities of AIN Ceramics (SiO2 첨가가 AIN 세라믹스의 고온 비저항에 미치는 영향)

  • Lee, Won-Jin;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • The effects of $SiO_2$ impurity on the high temperature resistivities of AIN ceramics have been investigated. When $SiO_2$ was added into 1 wt% $Y_2O_3$-doped AIN, DC resistivities have decreased and electrode polarizations disappeared. Impedance spectroscopy showed two semi-circles at $600^{\circ}C$, which were attributed to grain and grain boundary, respectively. $SiO_2$ doping had more significant effects on the grain resistivity than grain boundary resistivity, implying that doped Si acted as a donor in AIN lattice. In addition, voltage dependency of DC resistivity was observed, which might be related to dependency of size of grain boundary semi-circle on the bias voltage in impedance spectroscopy.

Joining of AIN Ceramics to Metals: Effect of Reactions and Microstructural Developments in the Bonded Interface on the Joint Strength (질화알루미늄과 금속간 계면접합에 관한 연구: 계면반응과 미세구조 형성이 접합체 강도에 미치는 영향)

  • 박성계
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.196-204
    • /
    • 1997
  • Joining of AIN ceramics to W and Cu by active-metal brazing method was tried with use of (Ag-Cu)-Ti alloy as insert-metal. Joints were produced under various conditions of temperature, holding time and Ti-content in (Ag-Cu) alloy Reaction and microstructural development in bonded interface were investigated through observation and analysis by SEM/EDS, EPMA and XRD. Joint strengths were measured by shear test. Bonded interface consists of two layers: an insert-metal layer of eutectic Ag- and Cu-rich phases and a reaction layer of TiN. Thickness of reaction layer increases with bonding temperature, holding time and Ti-content of insert-metal. It was confirmed that the growth of reaction layer is a diffusion-controlled process. Activation energy for this process was 260 KJ/mol which is lower than that for N diffusion in TiN. Maximum shear strength of 108 MPa and 72 MPa were obtained for AIN/W and AIN/Cu joints, respectively. Relationship between processing variables, joint strength and thickness of reaction layer was also explained.

  • PDF

Mechanical Properties and End-milling Characteristic of AIN-hBN Based Machinable Ceramics (AIN-hBN계 머시너블 세라믹스의 기계적 특성 및 엔드밀링 가공성 평가)

  • Beck, Si-Young;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, machining characteristics of AIN-hBN composites were evaluated in end-milling process. As a first step, AIN-hBN composite specimens with various hBN contents were prepared using hot press method. Material properties of the composites, such as relative density, Young's modulus and fracture toughness, were measured and compared. Then, a series of end-milling experinients were performed under various cutting conditions by changing cutting speed, depth-of-cut and feed rate. Cutting force variations were measured using a tool dynamometer during the cutting experiments. Machined surfaces of the specimens were observed using SEM and a surface pro filer to investigate the surface integrity changes. The cutting force decreased with an increases of hBN content. The cutting process was almost impossible for monolithic AIN, owing to severe chipping. In contrast, at high content of hBN, surface damage and chipping decreased, and better surface roughness can be obtained.

Effect of h-BN Content on Microstructure and Mechanical Properties of AIN Ceramics (AIN 세라믹스의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 이영환;김준규;조원승;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.874-880
    • /
    • 2003
  • The effect of h-BN content on microstructure, mechanical properties, and machinability of AlN-BN based machinable ceramics were investigated. The relative density of sintered compact decreased with increasing h-BN content. The four-point flexural strength also decreased from 238 MPa of monolith up to 182 MPa by the addition of 30 vol% h-BN. Both low Young's modulus and residual tensile stress, formed by the thermal expansion coefficient difference between AIN and h-BN, might cause the strength drop in AlN-BN composite. The crack deflection, and pull-out phenomena increased by the plate-like h-BN. However, the fracture toughness decreased with h-BN content. The second phases, consisted of YAG and ${\gamma}$-Al$_2$O$_3$, were formed by the reaction between Al$_2$O$_3$ and Y$_2$O$_3$. During end-milling process, feed and thrust forces measured for AlN-(10~30) vol% BN composites decreased with increasing h-BN particles, showing excellent machinability. Also, irrespective of h-BN content, relatively good surfaces with roughness less than 0.5 m (Ra) could be achieved within short lapping time.

Preparation of Porous $Al_2O_3$-AIN-Mullite and $Al_2O_3$-AIN-SiC

  • Kim, Byung-Hoon;Na, Yong-Han
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.147-151
    • /
    • 1995
  • Porous composite of $Al_2O_3$ and AIN based mullite and SiC can be prepared by alumium reaction synthesis and atmosphere controllied sintering in order to improve the durability of a gas filter body. The porous $Al_2O_3$-AIN-mullite, which has a strength of 168 kg/$\textrm{cm}^2$ and porosity of 51.59%, could be obtained by stmospheric firing at $1600^{\circ}C$ and the porous $Al_2O_3$-AIN-SiC with a porosity of 33% and strength of 977 kg/$\textrm{cm}^2$, could also be prepared. The average pore size has been changed from 0.2$\mu\textrm{m}$ in a reduction atmosphere and to 2$\mu\textrm{m}$ in an air atmosphere, respectively.

  • PDF

Microstructure and thermal conductivity of AIN ceramics with ${Y_2}{O_3}$ fabricated by pressureless sintering (상압 소결법으로 제조된 이트리아 첨가 질화 알루미늄 세라믹스의 미세 구조 및 열전도도)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The effect of ${Y_2}{O_3}$ as a sintering additive on thermal conductivity and microstructure of pressureless sintered AIN ceramics was investigated at sintering temperature range from 1,700 to $1,900^{\circ}C$. ${Y_2}{O_3}$ added AIN specimens showed higher densification rate than pure AIN because of the formation of the yttrium aluminates secondary phase by reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ of AIN surface. The thermal conductivity of AIN specimens was promoted by the addition of ${Y_2}{O_3}$ in spite of the formation of secondary phase in AIN gram boundaries and grain boundary triple junction, because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AIN lattice which is primary factor of thermal conductivity. The them1al conductivity of AIN specimens was promoted by increasing sintering time because the increases of average grain size and the elimination of secondary phases from the grain boundary due to the evaporation. Particularly. the thermal conductivity of AIN specimen sintered at $1,900^{\circ}C$ for 5 hours improved over 20 %. $141\;Wm^{-1}K^{-1}$, compared with the specimen sintered at $1,900^{\circ}C$ for 1 hour.

Initial Growth Mode and Epitaxial Growth of AIN Thin Films on $Al_2O_3(0001)$ Substrate by DC Faced Target Sputtering

  • Kim, Jin-Woo;Kang, Kwang-Yong;Lee, Su-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.368-370
    • /
    • 1999
  • Using DC faced target sputtering method we grow AIN the films on the $Al_2O_3$(0001) substrate with varying thickness(17$\AA$-1000$\AA$). We measured x-ray diffraction(XRD) profiles by synchrotron radiation($\lambda$=1.12839 $\AA$) with four circle diffractometer. The full width half maximum(FWHM) of rocking curve for the AIN (0002) diffraction of the film grown at $500^{\circ}C$ was $0.029^{\circ}$. Also, we confirmed that the stress between AIN thin film and $Al_2O_3$(0001) substrate was reduced as increasing AIN film thickness, and the critical thickness of 400~500 $\AA$, defined as a lattice constant in the film agrees with that in a bulk without stress, was obtained.

  • PDF

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF