• Title/Summary/Keyword: AI-based system

Search Result 990, Processing Time 0.027 seconds

Design of a Question-Answering System based on RAG Model for Domestic Companies

  • Gwang-Wu Yi;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.81-88
    • /
    • 2024
  • Despite the rapid growth of the generative AI market and significant interest from domestic companies and institutions, concerns about the provision of inaccurate information and potential information leaks have emerged as major factors hindering the adoption of generative AI. To address these issues, this paper designs and implements a question-answering system based on the Retrieval-Augmented Generation (RAG) architecture. The proposed method constructs a knowledge database using Korean sentence embeddings and retrieves information relevant to queries through optimized searches, which is then provided to the generative language model. Additionally, it allows users to directly manage the knowledge database to efficiently update changing business information, and it is designed to operate in a private network to reduce the risk of corporate confidential information leakage. This study aims to serve as a useful reference for domestic companies seeking to adopt and utilize generative AI.

A Study on Effective Adversarial Attack Creation for Robustness Improvement of AI Models (AI 모델의 Robustness 향상을 위한 효율적인 Adversarial Attack 생성 방안 연구)

  • Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.25-36
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.

Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography

  • Si Eun Lee;Hanpyo Hong;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.

Development of an AI-based remaining trip time prediction system for nuclear power plants

  • Sang Won Oh;Ji Hun Park;Hye Seon Jo;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3167-3179
    • /
    • 2024
  • In abnormal states of nuclear power plants (NPPs), operators undertake mitigation actions to restore a normal state and prevent reactor trips. However, in abnormal states, the NPP condition fluctuates rapidly, which can lead to human error. If human error occurs, the condition of an NPP can deteriorate, leading to reactor trips. Sudden shutdowns, such as reactor trips, can result in the failure of numerous NPP facilities and economic losses. This study develops a remaining trip time (RTT) prediction system as part of an operator support system to reduce possible human errors and improve the safety of NPPs. The RTT prediction system consists of an algorithm that utilizes artificial intelligence (AI) and explainable AI (XAI) methods, such as autoencoders, light gradient-boosting machines, and Shapley additive explanations. AI methods provide diagnostic information about the abnormal states that occur and predict the remaining time until a reactor trip occurs. The XAI method improves the reliability of AI by providing a rationale for RTT prediction results and information on the main variables of the status of NPPs. The RTT prediction system includes an interface that can effectively provide the results of the system.

Development of an AI Analysis Service System based on OpenFaaS (OpenFaaS 기반 AI 분석 서비스 시스템 구축)

  • Jang, Rae-young;Lee, Ryong;Park, Min-woo;Lee, Sang-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.97-106
    • /
    • 2020
  • Due to the rapid development and dissemination of 5G communication and IoT technologies, there are increasing demands for big data analysis techniques and service systems. In particular, explosively growing demands on AI technology adoption are also causing high competitions to take advantages of machine/deep-learning models to extract novel values from enormously collected data. In order to adopt AI technology to various research and application domains, it is necessary to prepare high-performance GPU-equipped systems and perform complicated settings to utilze deep learning models. To relieve the efforts and lower the barrier to utilize AI techniques, AIaaS(AI as a service) platform is attracting a great deal of attention as a promising on-line service, where the complexity of preparation and operation can be hidden behind the cloud side and service developers only need to utilize the high-level AI services easily. In this paper, we propose an AIaaS system which can support the creation of AI services based on Docker and OpenFaaS from the registration of models to the on-line operation. We also describe a case study to show how AI services can be easily generated by the proposed system.

Development of ANN- and ANFIS-based Control Logics for Heating and Cooling Systems in Residential Buildings and Their Performance Tests (인공지능망과 뉴로퍼지 모델을 이용한 주거건물 냉난방 시스템 조절 로직 및 예비 성능 시험)

  • Moon, Jin-Woo
    • Journal of the Korean housing association
    • /
    • v.22 no.3
    • /
    • pp.113-122
    • /
    • 2011
  • This study aimed to develop AI- (Artificial Intelligence) based thermal control logics and test their performance for identifying the optimal thermal control method in buildings. For this objective, a conventional Two-Position On/Off logic and two AI-based variable logics, which applied ANN (Artificial Neural Network) and ANFIS (Adaptive Neuro-Fuzzy Inference System), have developed. Performance of each logic was tested in a typical two-story residential building in U.S.A. using the computer simulation incorporating MATLAB and IBPT (International Building Physics Toolbox). In the analysis of the test results, AI-based control logic presented the advanced thermal comfort with stability compared to the conventional logic while they did not show significant energy saving effects. In conclusion, the predictive and adaptive AI-based control logics have a potential to maintain interior air temperature more comfortably, and the findings in this study could be a solid foundation for identifying the optimal thermal control method in buildings.

Development of AI based Autonomous Driving System for Outdoor Cleaning Robot (실외 청소 로봇를 위한 인공지능기반 자율 주행 시스템 개발에 관한 연구)

  • KO, Kuk Won;LEE, Ji Yeon
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.526-528
    • /
    • 2022
  • 실외 자율주행 청소 로봇을 위한 인공지능기반 자율주행 시스템을 개발하였다. 개발된 시스템은 ROS(Robot Operationg System) 기반으로 이루어졌으며, 3D 라이다와, 초음파 센서를 활용하여 주변의 장애물을 감지하고 GPS와 영상을 활용하여 로봇의 위치 인식을 하여 자율 주행을 진행하였다. 자율주행 실험결과 영상과 RTK-GPS를 사용하여 정해진 경로를 ±20cm이내의 오차를 가지고 추종하면서 청소를 진행하였다.

Optimization of Action Recognition based on Slowfast Deep Learning Model using RGB Video Data (RGB 비디오 데이터를 이용한 Slowfast 모델 기반 이상 행동 인식 최적화)

  • Jeong, Jae-Hyeok;Kim, Min-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1049-1058
    • /
    • 2022
  • HAR(Human Action Recognition) such as anomaly and object detection has become a trend in research field(s) that focus on utilizing Artificial Intelligence (AI) methods to analyze patterns of human action in crime-ridden area(s), media services, and industrial facilities. Especially, in real-time system(s) using video streaming data, HAR has become a more important AI-based research field in application development and many different research fields using HAR have currently been developed and improved. In this paper, we propose and analyze a deep-learning-based HAR that provides more efficient scheme(s) using an intelligent AI models, such system can be applied to media services using RGB video streaming data usage without feature extraction pre-processing. For the method, we adopt Slowfast based on the Deep Neural Network(DNN) model under an open dataset(HMDB-51 or UCF101) for improvement in prediction accuracy.

Why Data Capability is Important to become an AI Matured Organization?

  • Gyeung-min Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • Although firms with advanced analytics and machine learning (which is often called AI) capabilities are considered to be highly successful in the market by making decisions and actions based on quantitative analysis using data, the scarcity of historical data and the lack of right data infrastructure are the problems for the organizations to perform such projects. The objective of this study, is to identify a road map for the organization to reach data capability maturity to become AI matured organizations. First, this study defines the terms, AI capability, data capability and AI matured organization. Then using content analyses, organizations' data practices performed for AI system development and operation are analyzed to infer a data capability roadmap to become an AI matured organization.

Manufacturing Data Aggregation System Design for Applying Supply Chain Optimization Technology (공급망 최적화 기술 적용을 위한 제조 데이터 수집 시스템)

  • Hwang, Jae-Yong;Shin, Seong-Yoon;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1525-1530
    • /
    • 2021
  • By applying AI-based efficient inventory management and logistics optimization technology using the smart factory's production plan and manufacturing data, the company's productivity improvement and customer satisfaction can be expected to increase. In this paper, we proposed a system that collects data from the factory's production process, stores it in the cloud, and uses the manufacturing data stored there to apply AI-based supply chain optimization technology later. While the existing system supported approximately 10 to 20 data types, the proposed system is designed and developed to support more than 100 data types. In addition, in the case of the collection cycle, data can be collected 1-2 times per second, and data collection in TB units is possible. Therefore This system is designed to be applied to the existing factory of past in addition to the smart factory.